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Dietary Compounds As Anti-cancer Agents: 

A Preliminary Evaluation of Ion Channels And Membrane 

Excitability As Possible Target Mechanisms
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Uyarılabilirliğinin Olası Hedef Mekanizma Yönünden Ön Değerlendirilmesi]
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ABSTRACT
Although a variety of natural, dietary compounds have been suggested to have anti-

cancer properties, their modes of action are not well understood. In this article, we 

adopt membrane excitability and associated ion channel expression / activity as 

possible target mechanisms. Our previous work has shown that in a number of major 

human metastatic carcinomas (breast, prostate, small-cell lung cancers) functional 

voltage-gated Na+ channels are upregulated concomitantly with down-regulation of 

voltage-gated K+ channels. Such characteristics would render the cells’ membranes 

potentially ‘excitable’, in line with such cells’ ‘hyperactive’ behaviour. We call this 

the “cellular excitability” (“CELEX”) hypothesis of cancer progression. Here, we 
evaluate a number of natural anti-cancer compounds from the point of view of their 

possible effects mainly upon VGSC, and to a lesser extent K+ channel expression 

/ activity, in accordance with the hypothesis. The compounds evaluated include 

phytochemicals (resveratrol, curcumin, capsaicin, genistein and ginseng), those of 

marine origin (omega-3 polyunsaturated fatty acids) and minerals (zinc). The review 
does not intend be exhaustive and the emphasis is upon demonstrating sufficient 

detail in the examples given to establish ‘proof of principle’. It is concluded (1) that 

many dietary compounds, for which there is evidence for anti-cancer effects, work 

broadly in accordance with the CELEX hypothesis and (2) that this is a viable, 

futuristic field of study, but the modes of action of dietary compounds and natural 

products need to be evaluated much more systematically.
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ÖZET
Birçok doğal diyet-kaynaklı bileşik anti-kanser özellikleri nedeniyle bilinmelerine 
rağmen, etki mekanizmaları halen anlaşılamamıştır. Bu derlemede, olası bir 
mekanizma olarak membran uyarılması ve bununla bağlantılı iyon kanalı 
ekspresyonu / aktivitesi üzerine yoğunlaştık. Daha önceki çalışmalarımızda, bir 
grup major metastatik karsinomada (meme, prostat, küçük-hücreli akciğer kanseri 
gibi) fonksiyonel voltaj-kapılı Na+ kanallarının up-regülasyonu ve beraberinde 
voltaj-kapılı K+ kanallarının down-regülasyonunu bildirmiştik. Bu özellikler 
hücre membranını hiperaktif doğalarına uygun olarak potansiyel uyarılabilir 
hale getirmektedir. Bu makalede, bir grup doğal anti-kanser maddenin özellikle 
voltaj-kapılı Na+ kanallarının, kısmen de voltaj-kapılı K+ kanalları aktivitesi / 
ekspresyonu üzerinden etkilerini inceledik. Fitokemikaller (resveratrol, curcumin, 
capsaicin, genistein ve ginseng), deniz kaynaklı bileşikler (omega-3 poliansatüre 
yağ asidleri), ve mineraller (çinko) bu derlemede incelendi. Çalışmamız, tüm 
alanı ayrıntılı incelemek üzere tasarlanmadı. Bunun yerine, vurgulanan asıl 
nokta, prensibin ispatına dair örneklerin detaylı olarak açıklanmasıydı. Özetle, (1) 
anti-kanser etkilerine dair kanıt bulunan birçok diyet bileşeni, CELEX hipotezi 
kapsamında geniş olarak incelendi ve (2) bu inceleme oldukça yenilikçi ve 
uygulanabilir olmasına rağmen, diyet-kaynaklı bileşiklerin ve doğal ürünlerin 
etki mekanizmalarının çok daha sistematik olarak incelenmesi gerektiği sonucuna 
varıldı.
Anahtar Kelimeler: Kanser; metastaz; iyon kanalları; membran uyarılabilirliği; 
resveratrol; curcumin; capsaicin; genistein; ginseng; omega-3 poliansatüre yağ 
asidleri; çinko.
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1. INTRODUCTION
Dietary factors are well known to play an important role 

in cancer [e.g. 1,2] and some 55 % of all cancers have 
been related to nutritional habits [3]. Consequently, it is 
becoming increasingly popular to use diet or natural di-

etary supplements against cancers, since at appropriate 

doses, dietary compounds are naturally non-toxic [4]. 
For example, Mediterranean diets are generally thought 
to be favourable against cancer [e.g. 5] and the low inci-
dence of many (but not all) cancers in China and Japan 

are thought to be related to local diet [e.g. 6]. One poten-

tial problem with consumption of ‘anti-cancer’ dietary 

compounds, as natural supplements, is their unknown 

compatibility with clinical medicines. However, recent 
evidence suggests, at least for some cases, that potential 

chemopreventative foods, in fact, may enhance the ef-

ficacy of conventional therapy [7,8]. 
There are several types of natural products, especially 

fish oils, phytochemicals, including carotenoids and 

phenolics, dietary fibres, some micronutrients present 

in foods of both plant and animal origin, that are suc-

cessful cancer drugs [9,10]. However, in many cases, the 
modes of action of the dietary compounds in question, 
and in some cases, even the active ingredient(s) are not 

known. 

Ion channels, the main mechanistic focus of the review, 

are membrane-bound proteins, which permeate a single 

or a combination of ion species flowing down their elec-

trochemical gradients. The resulting changes in the in-

tracellular concentration(s), in turn, can lead to a variety 

of cellular effects, including enzyme activity, change in 
pH or Ca2+, cytoskeletal modifications etc. There are 
three main types of ion channel, distinguished by the 

stimulus (and the corresponding molecular mechanism) 

responsible for their activation: voltage-gated, ligand-

gated and mechanosensitive. Various cancer cells and 

tissues express ion channels, e.g. prostate [11-13], breast 
[14,15], lung [16-18], colon [19], melanoma [20] and 
lymphoma [21]. Expression of ion channels in cancer 
cells/tissues is probably because of their powerful func-

tional characteristics [e.g. 22]. It would follow, therefore, 
that there is a possible basis for ion channels being a 

major target for the anti-cancer effects of some natural 

compounds. In this review, we make an attempt to out-

line the relevant evidence. The chemical structures of 

the dietary compounds covered are shown in Figure 1. 
The approach adopted is not exhaustive and instead of 

dealing with a specific cancer, we draw examples from 

various cancers randomly, in attempt to establish ‘proof 

of principle’. A complementary hypothesis dealing with 

“cause and development of neoplasms” is in the press at 

the time of writing [23]. 
Although voltage-gated Na+ channels (VGSCs) and 

voltage-gated K+ channels (VGPCs) are commonly as-

sociated with ‘excitation’ and impulse conduction, there 

is increasing evidence that they are also expressed in 

‘non-excitable’, including epithelial cells [24,25]. Recent 
evidence shows that significant in vitro (and in some 

cases, in vivo) upregulation of functional VGSCs occurs 

in cancers of prostate [11-13], breast [14,15], and small-
cell lung carcinoma [17,18]. 
Where VGPC activity has also been studied, an inverse 

relationship with metastatic potential has been found, i.e. 

strong metastatic potential was associated with VGPC 

down-regulation [11-13]. Some examples are illustrated 
in Figure 2. Importantly, therefore, the data taken to-

gether would imply that metastatic cell membranes are 

potentially excitable and, indeed, action potentials have 

been recorded from some aggressive carcinoma cells 

[e.g. 17]. This notion would appear to parallel the hy-

peractive cellular behaviours associated with metastasis. 

Indeed, ion channel activity has been found to control 

/ enhance a variety of cellular behaviours that would 

be involved in the metastatic cascade: morphological 

change [26], galvanotaxis [27], motility [28], secretory 
membrane activity [29,30], adhesion [31] and invasion 
[11,12]. Bennett et al. (2004) have demonstrated that 
VGSC expression increased with the invasiveness of hu-

man prostate carcinoma cells [13]. It was stated, in fact, 
that VGSC expression “is necessary and sufficient” for 

the upregulation of invasiveness.

Upregulation of VGSC expression and its positive cor-

relation with metastasis have also been demonstrated in 

human breast and prostate cancer in vivo [15,32]. There 
is also some evidence for downregulation of VGPC ex-

pression at least in some prostate cancers in vivo [33]. 

Figure 1. Chemical structures of some of the dietary compounds 

covered in this review.
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Thus, VGSCs could act as an independent prognostic 

marker and/or a promising target for cancer therapy. In-

deed, VGSC blockers (e.g. anti-convulsant drugs) have 

been suggested to have clinical potential as cytostatic 

agents against prostate carcinoma [34]. 

1.1 The ‘cellular excitability’ (CELEX) hy-

pothesis of cancer progression

From the available data, taken together, we have adopt-
ed the following two-part working hypothesis for the 

role of membrane ion channels in cancer:

1. In primary tumorigenesis, where cancer cells would 

be undergoing uncontrolled cell division, facilitated 

by K+ channel activity, compounds blocking K+ 

channels would have anti-proliferative / anti- cancer 

effects.

2. In secondary tumorigenesis (metastasis), facilitated 

by functional VGSCs upregulation, VGSC blockers 

would have anti-metastatic effects. However, since 
increase in metastatic potential is accompanied by 

concomitant VGPC downregulation, which would 

normally be antagonistic to VGSC functioning, 

VGPC blockers could have a pro-cancer effect. 

For convenience, this will be referred to here as the 
“CELEX” hypothesis of cancer progression. Metastasis 

is the main cause of death in most cancer patients. An 

ideal anti-metastasis compound, therefore, would sup-

press VGSC whilst promoting VGPC activity. 

2. PHYTOCHEMICALS
Phytochemicals are described as bioactive extra-nu-

tritional constituents in fruits, vegetables, grains, and 

other plant foods [35]. There are thousands of individ-

ual phytochemicals which occur in diet. Epidemiologic 

studies have suggested that a reduced risk of cancer is 

associated with high consumption of vegetables and 

fruits [36], although this area is controversial [37]. Ac-

cording to the CELEX hypothesis, the apparent incon-

sistency could be due the noted potentially complex role 

of K+, high in such diet. 

1.1 Resveratrol

Resveratrol (3,4’,5-trihydroxystilbene; 228.2 Da) is 
a plant polyphenol present in significant levels in red 

grapes (hence, red wine), berries and peanuts [38]. 
In addition, it is the active constituent of the roots of 

Polygonum cuspidatum, which is used as a drug in 

Asian medicine [39]. This is a strong antioxidant which 
has been shown to exert substantial cytotoxic effects 

upon a variety of tumour cell lines, including those of 

prostate, colorectal and leukaemia [39-41]. 
There is also evidence that resveratrol affects ion chan-

nels. Wu et al. (2005) showed that resveratrol inhibited 

VGSC currents in male rat dorsal root ganglion (DRG) 

neurones with an IC50 of about 11 µM [42]. Kim et al. 
(2005) found a similar effect on rat DRG neurones and, 

additionally, showed that tetrodotoxin (TTX)-sensitive 

VGSCs were about 5-fold more sensitive than TTX-re-

sistant VGSCs [43]. In both cases, the Hill coefficient 
was ~1 implying a 1:1 interaction between the VGSC 

and resveratol [43]. As regards K+ channels, effects 
were mixed: inhibition [42,44] and potentiation [45,46]. 
It would appear; therefore, that resveratrol could have 
anti-cancer effects in accordance, at least partially, with 

the CELEX hypothesis. We should note that a number of 

other targets have also been associated with resveratrol, 

including caspase-3, p38 MAP kinase [47] and cAMP 
[48], which could have knock-on effects upon VGSC 
and/or VGPC activity.

Figure 2. Voltage-gated membrane current recordings from vari-

ous cancer cell lines. A, Mat-LyLu. B, AT-2. These are isogenic rat 

prostate cancer cell lines of strong and weak metastatic potential, 

respectively. C, PC-3. D, LnCaP. These are human prostate cancer 

cell lines of strong and weak metastatic potential, respectively. E, 

MDA-MB-231. F, MCF-7. These are human breast cancer cell lines 
of strong and weak metastatic potential, respectively. In all three 

pairs the following 2 key features are apparent: The strongly meta-

static cell lines are associated with (i) expression of a voltage-gated 

inward (Na+) membrane current (sharp downward signal); and (ii) 
down-regulation of the sustained outward currents. The combination 

of (i) and (ii) renders these cells ‘excitable’, and this is the basis of 

the CELEX hypothesis. Note the differences in some of the respec-

tive scales, which underestimate the visual impact of the differences 

mentioned. Modified from 11,12,15. 
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1.2 Curcumin 

Curcumin (diferuloylmethane; 368.4 Da) is a naturally 
occurring yellow pigment isolated from ground rhi-

zomes of the plant Curcuma longa L. (Zingiberaceae). 
It is also the primary active ingredient of the spice, tur-

meric which is used for colouring and flavoring food. 

Curcumin is also used as a drug in Asian medicine and 

is well known for its anti-inflammatory, potent anti-

oxidant, hypocholesterolemic and hypoglycemic effects 

[49]. Independently of these, however, curcumin has 
been shown to be effective against metastatic melanoma 

[50], prostate cancer [51] and certain lymphomas [52]. 
Aggarwal et al. (2005) showed that dietary curcumin 

would inhibit lung metastases of human breast cancer 

cells injected into nude mice [53]. The underlying cel-
lular effects were suggested to involve inhibition of an-

giogenesis and induction of apoptosis. 

Although a major mode of action of curcumin is thought 

to be inhibition of the NF-κB pathway, there is also 
some evidence for ion channel involvement. Keller et al. 

(2005) showed that curcumin partially rescued the loss 

of function in the L325R mutation of Nav1.5 [54]. This 
effect was mimicked by mexiletine, a well established 

antiarrhythmic VGSC blocker. Although, the mode of 

action of curcumin may, therefore, be comparable to 

that of VGSC suppression, this needs to be tested more 

directly. There is indirect evidence that curcumin may 

also affect K+ channels. This comes from work on the 

cystic fibrosis transmembrane conductance regulator 

(CFTR), the Cl- channel gating and phosphorylation of 
which are modulated by curcumin. Interestingly, CFTR 
may also regulate other ion channels including K+ chan-

nels, so cascade effects are possible [55]. Other poten-

tially interesting modes of action include modulation of 

inositol 1,4,5-triphosphate receptor, responsible for re-

leasing Ca2+ from intracellular stores [56] and a range 
of other signalling mechanisms, e.g. cyclooxygenase-2, 

nitric oxide synthase and cytokines [57]. Furthermore, 
curcumin may affect epidermal growth factor signalling 

[58] which is known to regulate ion channel, including 
VGSC expression [e.g. 59].
It seems possible, therefore, that curcumin may have 

ion channel effects that need further investigation as re-

gards both precise modes of action and relevance to the 

cancer process, including the CELEX hypothesis.

1.3 Capsaicin

Capsaicin (8-methyl-N-vanillyl-6-nonenamide; 305.4 
Da), a type of vanilloid, is the major pungent ingredient in 

a variety of red peppers of the genus Capsicum capsaicin. 

Capsaicin has been reported to induce apoptosis in many 

human cancer cell types, including breast cancer cells 

[60], colon cancer [61] and gastric adenocarcinoma [62]. 
More recent evidence suggests that red peppers (hence, 

capsaicin) can also be good against prostate cancer by 

inhibiting androgen-independent growth [63]. 
Capsaicin is a specific ligand (activator) for the vanil-

loid receptor TRPV1, a member of the TRP (“transient 

receptor potential”) family of ion channels; it’s basic 
action is to activate a non-selective cation channel [64]. 
However, capsaicin may have significant effects upon 
a variety of ion channels. As regards VGSCs, the avail-

able data are consistent in showing that capsaicin inhib-

its VGSC activity. This has been shown for VGSCs in a 

range of cells, as follows: rat DRG colon sensory neu-

rones [65], rat trigeminal ganglion (TG) neurones [66] 
and rat atrial myocytes [67]. Furthermore, capsaicin po-

tentiated the in vivo local anaesthetic activity of VGSC 

blockers [68]. An indirect effect upon membrane elastic-

ity has been suggested [69]. It is not known if capsaicin 
may affect VGSC activity directly. However, Bielefeldt 
(2000) showed that capsaicin would block VGSCs in rat 

visceral sensory neurones that did not respond to capsa-

icin itself [70]. As regards K+ channels, most evidence 
suggest a blocking effect, as for the delayed rectifier of 

rabbit Schwann cells [71], slow-inactivating K+ currents 
of rat pituitary melanotrophs [72], outward rectifying 
K+ currents of rat taste receptor cells [73], transient K+ 
(IA) current of rat TG neurones [74], and VGPCs of rat 
visceral sensory neurones [70]. Interestingly, in rabbit 
coronary arteries, delayed-rectifier VGPCs were acti-

vated by 1 – 30 µM capsaicin [75].
In conclusion, the range of effects of capsaicin on ion 

channels is broadly in agreement with at least the VGSC 

part of the CELEX hypothesis.

1.4 Genistein 

Genistein (270.2 Da) is one of the predominant isofla-

vones that found in soy products [76]. It has powerful 
biologic activity including as an antioxidant, as well as 

an inhibitor of angiogenesis and proliferation [76,77]. 
Importantly, genistein inhibits protein tyrosine kinases 

(PTKs) and DNA topoisomerases I and II [76]. More-

over, it can act as an agonist for the beta isoform of the 

estrogen receptor [78]. 
Some work has been done on effects of genistein (and 

its inactive analogues, daidzein and genisitin) on expres-

sion and activity of ion channels. Hilborn et al. (1998) 
and Bouron et al.(1999) showed originally that func-

tional expression of VGSCs (e.g. in PC12 cells by nerve 

growth factor stimulation) would involve PTK activity 

[79,80]. Consistent with this effect, genistein decreased 
excitability of rat TG nociceptive neurones [81]. How-

ever, in the study of Liu et al. (2004) daidzein was also 
effective and it was suggested that the primarily role of 

genistein was ‘general’ and independent of PTK [81]. A 
similar conclusion was reached earlier by Kusaka and 

Sperelakis (1996) showing that bath application of ge-

nistein and daidzein inhibited VGSC currents in human 
uterine smooth muscle cells; the genistein-induced block 
was maximally ~98 % (IC50 ~9 µM) [82]. Genistein also 
suppressed VGSC activity in neurones cultured from 

neonatal rat brain [83]. In neonatal rat ventricular cells 
(myocytes), modulation of VGSC activity (involving 
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enhancement of peak current amplitude) by lysophos-

phatidylcholine (normally derived intracellularly from 

membrane phospholipids) was completely blocked by 

genistein [84]. Wang et al. (2003) showed similarly that 
genistein (but not genistin) inhibited VGSC currents 

in rabbit myocytes [85]. Thus, it would appear that the 
major effect of genistein on a variety of VGSCs is con-

sistently one of inhibition. Considerable work has also 

been done on effects of genistein on K+ channels. The 

results are consistent in showing inhibition of various K+ 

channels by genistein, as for delayed rectifiers in guinea 

pig myocytes [86], mouse Schwann cells [87], rat TG 
neurones [81] or guinea pig colon smooth muscle cells, 
Kv1.3 of human T lymphocytes [88], and cloned human 
Kv1.4 expressed in CHO cells [89]. As regards, mode(s) 
of action of genistein, src kinase was proposed to have 

a major role [79]. On the other hand, the effectiveness of 
daidzein [7,82,83,86] as well as the fast action of genis-

tein, having an effect within ~2 mins [83] in some ex-

periments (on both VGSCs and VGPCs) would suggest 

also a direct effect, independent of PTK. In fact, Paillart 

et al. (1997) showed that the effects of genistein and ve-

ratridine on VGSCs were competitive, implying binding 

upon the same site within the channel complex [83]. 
In conclusion, the available evidence would strongly 

support the main, VGSC part of the CELEX hypothesis. 

However, the net effect on cancer progression may be 
complex due to the strong inhibitory effects on K+ chan-

nels, and the multitude of knock-on effects that may re-

sult from any PTK inhibition.  

2.5 Ginseng

Ginseng, the root of Panax species, has been used as a 

traditional medicine in Asia for thousands of years; it 
is now a popular worldwide natural medicine [90]. The 
active ingredients of ginseng are ginsenosides, also 

called “ginseng saponins” [91]. Ginseng is well known 
as a potent antioxidant and also has inhibitory effects on 

proliferation, apoptosis and angiogenesis [92]. Indeed, 
administration of ginseng suppressed colon cancer in 

rats [93]. 
The effect of ginseng on VGSC activity is consistently 

one of inhibition. Thus, ginseng and/or its bioactive in-

gredients (e.g. ginsenosides, Rg3, Rf, Rb1), where tested, 

have been shown to suppress various VGSCs in a dose 

dependent manner. Lee et al. (2005) showed inhibition 

of rat brain Nav1.2 VGSCs expressed in Xenopus oo-

cytes; both resting and open states were suppressed [94]. 
A similar effect of ginseng aqueous extract (or Rb1) was 
reported for Nav1.2 VGSC transfected into tsA201 cells 

[95]. In a structural approach, Kang et al. (2005) found 
that ginseng inhibited mouse Nav1.5 (also expressed in 

Xenopus oocytes); this effect was voltage dependent [96]. 
Jeong et al. (2004) showed that VGSC inhibition by the 

ginsenoside Rg3 was sterospecific and involved mainly 

the inactive state of the channel [97]. Interestingly, most 
studies suggested that ginseng would enhance K+ activ-

ity. Such effects have been reported for guinea pig re-

combinant HERG channels (a type of VGPC) expressed 
in Xenopus oocytes [98], guinea pig cardiomyocyte de-

layed rectifier [99] and tetraethyl ammonium-sensitive 
K+ channels of rat aorta [100]. Only one study reported 
VGPC inhibition by Rg3 [97]. The effects of ginseng 
and ginsenosides have been suggested to involve a vari-

ety of modes of action, including non-covalent allosteric 

modification of neurotoxin binding site-2 [101], inter-
action with the S4 segment of domain DII [94], or via 
nitric oxide / direct S-nitrosylation [99]. 
In conclusion, it would appear, therefore, that the effects 

of ginseng on various VGSCs and VGPCs are strongly 

in agreement with the CELEX hypothesis. 

3. MARINE COMPOUNDS
Marine natural products, including dietary compounds, 

have been a source of new leads for the prevention / 

treatment of many deadly diseases, in particular cancer 

[102]. Nowadays, a number of marine compounds and 
their synthetic derivates are undergoing clinical trials 

as anticancer drugs [103]. Here, we focus on marine 
long-chain ω-3 polyunsaturated fatty acids (PUFAs) for 
which there is considerable evidence as regards possible 

ion channel effects.

3.1 Omega-3 polyunsaturated fatty acids 

There are three biologically significant members of the 

ω-3 PUFA family: Alpha-linolenic acid (ALA; 18:3n-
3), which has the main function of being a precursor 

of the other two, eicosapentaenoic acid (EPA; 20:5n-3) 
and docosahexaenoic acid (DHA; 22:6n-3), the latter 
two being the most active. ALA can be synthesised in 

plants (e.g. dark green leafy vegetables, soybeans, cano-

la oil, flaxseeds, some nuts, especially walnuts, and 

fenugreek), but not in humans. Therefore, ω-3 PUFAs 
are “essential” to humans and must be obtained from 

diet. However, the conversion of ALA to the more ac-

tive, longer-chain metabolites is inefficient [104] and 
the major source of DHA and EPA intake in humans 
is marine food, especially oily fish and fish oils [105]. 
Indeed, epidemiologic data from populations with high 

consumption of fish and fish oil have shown that there 

is a positive correlation between reduced incidence of 

various cancers and marine food intake. There is also 

substantial experimental evidence for a protective role 

of ω-3 PUFAs against carcinogenesis in in vitro and 
animal models of cancer, including breast, prostate, co-

lon, melanoma [106-109]. We should note, however, that 
a recent analysis of a range of earlier data produced a 

rather surprising ‘null’ effect [110]. Nevertheless, ω-3 

PUFAs have been used in clinical trials, since no serious 
side effects or complications were apparent [111]. Fur-
thermore, ω-3 PUFAs would increase the cytotoxicity 
of several antineoplastic agents [112]. 
Strong inhibitory effects of ω-3 PUFAs on VGSC activ-

ity has been established in several studies, although not 
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always on cancer or cancer cell lines [113,114]. Xiao et 
al. (1995) showed that there is a potent inhibitory effect 

of ω-3 PUFAs on VGSC expression in isolated neonatal 
rat cardiac myocytes [115]. Inhibition of VGSC activ-

ity was dose, time and voltage-dependent, but not use 

dependent. Although DHA, EPA and ALA also blocked 
VGSCs in adult rat cardiac myocytes, generally around 

3-fold higher concentrations were needed [116]. More 
recently, similar inhibitory effects of PUFAs on VGSC 
were reported on human bronchial smooth muscle cells 

[113]. The inhibition was dose-dependent, with a half-
maximal inhibitory concentration (IC50) for EPA of 

some 2 µM. Beside the direct / acute effect of EPA on 
the VGSC activity, EPA also had a chronic effect on 

VGSC gene expression.

More recently, we have investigated the effects of DHA 
on the VGSC expressed in the strongly metastatic human 

breast cancer line, MDA-MB-231 [117]. We have also 
tested the influence of DHA on the in vitro metastatic 
cell behaviour (migration) of this cell line. Micromolar 

levels both short-term (acute) and long-term (48 – 72 

h) application of DHA significantly blocked the VGSC 
current. In addition, long-term (48 h) application of the 

fatty acid down-regulated both mRNA and total and 

plasma membrane protein levels of the VGSC. More-

over, DHA exhibited a potentially anti-metastatic effect, 
reducing in vitro migration by ~25 %. Importantly, this 
effect appeared to be mediated via the VGSC inhibition, 

since co-application of DHA and TTX, a highly specific 
blocker of VGSCs had the same quantitative effect as 
DHA or TTX by itself [117]. 
As regards K+ channels, in cardiac cells, 30 µM DHA, 
but not ALA, produced a direct open channel block of 

the cardiac delayed-rectifier K+ channel (Kv1.5), pos-

sibly by direct binding to an extracellular domain [118]. 
DHA blocked the human transient outward K+ (Ito) cur-
rent encoded by the Kv4.3 gene [119]. Xiao et al. (2002) 
also reported that ω-3 PUFAs (DHA and EPA) inhibited 
two outward K+ currents: Ito and the delayed rectifier 

K+ current (IK) in adult ferret cardiomyocytes cultures 

[120]. Interestingly, it was noted that the ω-3 PUFA-in-

duced inhibition of cardiac Ito and IK was much less 

potent than the effect on VGSC [120]. However, Leifert 
et al. (2000) reported that dietary ω-3 PUFAs supple-

mentation did not significantly affect whole-cell cardiac 

outward K+ currents in rat cardiomyocytes [121]. Jude 
et al. (2003) studied Ito in rat ventricular myocytes by 

whole-cell patch clamp recording and found that 10 µM 
DHA blocked Ito but activated a delayed outward cur-
rent [122]. Human HERG channels, expressed in CHO 
cells, were blocked by 10 µM DHA in a time, voltage 
and use dependent manner [123]. On the other hand, 
20 µM DHA significantly increased the activity of the 
cardiac delayed rectifier channel expressed in Xenopus 

oocytes [124].
The mechanism by which ω-3 PUFAs may regulate ion 

channels especially, VGSCs are unclear. There is in-

creasing evidence indicating that free fatty acids may 

act directly on channels themselves and not via metabo-

lites [118,125,126]. Xiao et al. (2001) proposed that the 
binding site of EPA upon Nav1.4 was located on the 

cytoplasmic segment linking transmembrane domains 

DIII and DIV in the α-subunit [126]. Alternatively, it 
has also been proposed that ω-3 PUFAs may affect ion 
channels indirectly by altering the fluidity of the phos-

pholipid bilayer [127]. 
On the whole, therefore, it would appear that ω-3 PU-

FAs inhibit VGSCs but may potentiate the activity of 
some delayed rectifier VGPCs. This is precisely the re-

versal of the VGSC - VGPC pattern seen in metastatic 

carcinoma cells (Fig. 2). Thus, the effects of ω-3 PUFAs 
on VGSC and VGPC activity can be synergistic, consis-

tent with suppression of membrane excitability and the 

CELEX hypothesis.

4. MINERALS
Several minerals, including trace elements, are thought 

to have anti-cancer properties [128]. These are likely to 
have a diversity of biological actions. Particularly inter-

esting examples are zinc and selenium [129]. 
4.1 Zinc

This is an important part of diet. Several foods are rich 

in zinc, including pumpkin seeds, flax seeds, fish, who-

legrains and legumes, and these may have anti-cancer 

effects [130]. Zn2+ is a metal (65.4 Da) and occurs in 
solution as inorganic cation Zn2+. There are specific 

membrane transporters for Zn2+ and both intracellular 

and extracellular Zn2+ are biologically highly active. 

Lower levels of Zn2+ have been found in prostate cancer 

patients compared with the normal and it has been sug-

gested that zinc supplementation could be good against 
prostate cancer [131].
Zn2+ has been found to have a variety of effects on ion 

channels at dietary concentrations (~100 µM). In the 
original work on the squid giant axon model, Zn2+ in-

hibited VGSC functioning by slowing channel opening 

kinetics [132]. In a comparative study of cations, sub-
mM Zn2+ was found to be very effective in inhibiting 

VGSC current in canine Purkinje fibres by inducing a 

depolarizing shift in voltage dependence of activation 
as well as a delaying of time to peak [133,134]. Ravin-

dran et al. (1991) studied effects of Zn2+ on rat skeletal 

and canine cardiac (Nav1.5) VGSCs and found voltage-

dependent blocking effects with differential sensitivity 

(~100-fold higher, KB ~60 µM) for the latter [135]. In 
mammalian heart VGSCs, the effect was direct upon 

the VGSC protein since sub-conductance effects could 

be observed upon VGSCs inserted into planar bilayers 

[136]. The site of action of Zn2+, indeed, was determined 
to be near or within the saxitoxin binding site [137]. As 
regards, K+ channels, both inhibitory and enhancement 

effects have been reported. Thus, micromolar Zn2+ 
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inhibited cloned mammalian Kv1.1, Kv1.3, Kv1.4 and 

Kv1.5 channels by shifting the voltage dependency of 

activation and inactivation in the depolarizing direction 
[138,139], as well as a reduction in peak conductance 
[140]. Differential effects were seen on human two-pore 
K+ channels. TREK-1 and TASK-3 were inhibited by 

micromolar Zn2+ whilst TASK-1 and TASK-2 (all ex-

pressed in Xenopus oocytes) were not affected [141,142]. 
On the other hand, TREK-2 channels were activated 

by Zn2+ with an EC50 of ~90 µM [143]. Interestingly, 
KATP channels were also activated by both intracellu-

lar and intracellular Zn2+ in transfectant COS-7 cells 

[144], an insulinoma cell line [145] and rat hippocam-

pal neurones [146]. At a different level, it has also been 
shown that Zn2+ is necessary for the assembly of VGPC 

tetramers, i.e. Zn2+ could also promote VGPC activity 

indirectly [147,148]. 
In spite of the broad range of possible actions and pro-

teins associated with Zn2+, the effect on VGSCs is con-

sistently one of inhibition. On the other hand, K+ chan-

nels are either inhibited or activated by Zn2+. Taken 

together, therefore, the potential beneficiary effects 

of Zn2+ on cancer is in accordance with the CELEX 

hypothesis. Indeed, Zn2+ has been suggested to be an 

endogenous and exogenous modulator of cellular excit-

ability [149].

6. CONCLUSIONS AND FUTURE PER-

SPECTIVES
In this review, we made an initial attempt to evaluate 

the modes of action of a number of dietary compounds 

for which evidence exits for anti-cancer role. As targets 

of action, we specifically focused on ion channels and 

membrane excitability in the light of our recent work 

in this area. The CELEX hypothesis proposed here for 

the first time assumed that compounds that would block 

VGSC activity would be good anti-metastatic agents 

since VGSC activity has been shown previously to en-

hance metastatic cell behaviours and correlate with in 

vivo metastatic potential [references given in the Intro-

duction]. The evidence for almost all of the dietary com-

pounds reviewed – phytochemicals (resveratrol, cur-

cumin, capsaicin, genistein and ginseng), marine foods 

(ω-3 PUFAs) and minerals (Zn2+) would appear to sup-

port the CELEX hypothesis, at least for the main VGSC 

component. The role of K+ channels would be more 

complex since K+ channel blockage could suppress 

proliferation (i.e., primary tumorigenesis), whilst in 

advanced (metastatic) disease when proliferation could 

of secondary importance, it would be K+ channel (es-

pecially VGPC) enhancement, concurrent with VGSC 

suppression, that would be beneficial. Such mixed role 

of K+ channels may cause some of the discrepancy in 

the reported effects of vegetables and fruit in cancer 

[37]. Such diet would be high in K+ and elevated plasma 
K+ (reduced trans-membrane electrochemical gradient) 

could have an effect in the same direction as K+ channel 

suppression. One might expect, therefore, that dietary 

compounds blocking K+ channel activity would be good 

against early-stage cancer (primary tumorigenesis) but 

not late-stage (metastatic) cancer. However, this view-

point is likely to be simplistic since it is increasingly 

been recognized that the relationship between prolifera-

tive and metastatic disease stages may not be one of a 

direct progression and that tumours may be ‘pre-pro-

grammed’ as metastatic [150]. According to our current 
understanding, therefore, the VGSC part of the CELEX 

hypothesis may be viewed as being relatively the more 

significant. In any case, as noted already in the Intro-

duction, it is metastasis that is the main cause of death 

in most cancer cases. 

There are several dietary compounds, with varying evi-

dence for anti-cancer effects, that remain to be tested 

in the context of the CELEX hypothesis. These include 

lycopene, a potent antioxidant carotenoid, mostly found 

in tomatoes, which has been shown to inhibit tumour 

cell growth [151]. In combination with vitamin E and 
selenium, lycopene suppressed metastatic tendency in 

human prostate cancer [152]. Catechins are the active 
ingredients of green tea for which there is substantial 

anti-cancer / metastasis effects with a range of modes 

of action [153]. A particularly important such effect ap-

pears to involve angiogenesis [154]. It would be of in-

terest to determine if such effects of catechins might 

involve ion channels, including VGSCs, known to be 

expressed in human endothelial cells [155]. Another po-

tentially interesting dietary supplement is “kava kava” 

which a strong “calming agent”, associated with low in-

cidence of cancer [23]. Finally, vitamins A, C, D and E 
have been associated with anti-cancer effects and some 

are currently undergoing clinical trials [156], but it is 
not known if any would affect ion channels. Importantly, 

the association of vitamin D with Ca2+ homeostasis is 

well known, so ion channel effects would seem feasible.

Extending diet to natural products generally, additional 

candidates emerge. Aspirin, digitalis and taxol are 

known to have anti-cancer effects and their modes of 

action may involve ion channels, including VGSCs. Our 

own work already would suggest that the highly specific 

VGSC blocker TTX (produced naturally by puffer fish) 

is a potential anti-metastasis drug. Although TTX is can 

be lethal, clinical trials are underway for its use as a 

novel analgesic (www.wextech.ca). There is preliminary 

[157] and anectodotal evidence (www.escozul.com) that 
scorpion toxin may be effective against certain gliomas. 

Scorpion toxin is another potent VGSC blocker [158]. 
In this review, we focused on VGSC and K+ channels as 

novel targets for cancer therapy, in particular, the VGSC 

+ VGPC combination as a minimal functional unit to 

elicit membrane excitability. We should stress, however, 

that ion channels work broadly as an ‘orchestra’ and, in-

deed, there is some evidence for other types of ion chan-

nels, especially voltage-gated Ca2+ channels, to be in-

volved in the cancer process [e.g. 159]. Interestingly, an 
inverse correlation has been found between use of Ca2+ 

channel blocker drugs and incidence of prostate cancer 
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[160]. Finally, returning to natural products, conotox-

ins (from marine snails), which are potent Ca2+ chan-

nel blockers, have also been suggested to have clinical 

potential as drugs [161]. 
In conclusion, several dietary compounds could have 

anti-cancer, especially anti-metastatic effects via 

action upon ion channels and reduction of membrane 

excitability. We propose that this is a viable field of study 

warranting further, more detailed studies on modes 

of action, concentration and possible time-dependent 

effects [e.g. 162].
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