Research Article [Araştırma Makalesi]

Yayın tarihi 23 Ocak, 2009 © TurkJBiochem.com [Published online 23 January, 2009]

Isolation and Characterization of Native *Bacillus thuringiensis* Strains from Soil and Testing the Bioactivity of Isolates Against *Ephestia Kuehniella* Zeller (Lepidoptera: Pyralidae) Larvae

[Topraktan Doğal *Bacillus thuringiensis* Suşlarının İzolasyonu, Karakterizasyonu ve *Ephestia Kuehniella* Zeller (Lepidoptera: Pyralidae) Larvalarına Karşı Biyolojik Aktivitesi]

Fatma Öztürk¹, Leyla Açık¹, Abdurrahman Ayvaz², Bülent Bozdoğan³, Zekiye Suludere¹

 ¹ Gazi University, Faculty of Science and Arts, Department of Biology, 06500, Ankara, Turkiye
² Erciyes University, Faculty of Science and Arts, Department of Biology, 38039, Kayseri, Turkiye
³Adnan Menderes University, Faculty of Medicine, Aydın, Türkiye

Yazışma Adresi [Correspondence Address]

Leyla Açık

Gazi University, Faculty of Science and Arts, Department of Biology, 06500, Ankara, Turkiye Phone: + 90-312-2021185 Fax:+90-312-2122279 leylaacik@gmail.com

[Received: 07 July 2008, Accepted: 19 December 2008] Kayıt tarihi: 07 Temmuz 2008, Kabul tarihi: 19 Aralık 2008

ABSTRACT

Objective: This study aimed to find native strains of *Bacillus thuringiensis* that are toxic to some major insect pests harming the economically important stored products in Turkey.

Methods: Five *B. thuringiensis* strains were isolated from soil samples. These isolates were evaluated in terms of their novel activities according to the following criteria: parasporal inclusion morphology, SDS-PAGE, plasmid DNA patterns, toxicity against *Ephestia kuehniella*, and detection of *cry*1, *cry*2, *cry*3, *cry*4, *cry*5, *cry*7, *cry*8, *cry*12, *cry*21 and *cyt* type genes with PCR.

Results: One strain, named as F21, gave positive results with both *cry*1 and *cry*2 general primers in PCR. However, two strains, named as F16 and F19, gave positive results only with *cry*2 general primers. The PCR amplified region of *cry*1 gene for F21 showed 97% similarity to *cry1Ac* and *cry*2 gene for F21, F16 and F19 showed 96% similarity to *cry2Ab*. The F21 and F19 showed 96% similarity to *cry2Ab*. The F21 and F19 showed 96% similarity to *cry2Ab*. The F21 and F19 showed 96% similarity to *cry2Ab*. The F21 and F19 showed 96% similarity to *cry2Ab*. The F21 and F19 showed 96% similarity to *cry2Ab*. The F21 and F19 showed 96% similarity to *cry2Ab*. The F21 and F19 showed 96% similarity to *cry2Ab*. The F21 and F19 showed 96% similarity to *cry2Ab*. The F21 and F19 and 80% mortality respectively. Three *B*. *thuringiensis* isolates produced typical inclusions, which were spherical, bipyramidal and cuboidal in shape, associated protein bands being approximately 130 and 65 kDa. The most larvaecidal isolates for *E*. *kuehniella* were F21, F19 and F16, with LC₅₀ values of 1.08, 1.48, and 2.17, respectively.

Conclusion: The highly active *B. thuringiensis* isolates (F21 and F19) tested in this work appeared promising for new insecticide or biopesticides formulations and maybe even utilized to obtain genetically modified pest resistant plants.

Key Words: Bacillus thuringiensis, biological control, Ephestia kuehniella, bioassay, stored product

ÖZET

Amaç: Bu çalışmanın amacı Türkiye'de ekonomik olarak önemli olan depolanmış ürünlere zarar veren büyük böcek gruplarına karşı toksik etki gösteren doğal *Bacillus thuringiensis* izolatlarının bulunmasıdır.

Metod: Beş doğal *B. thuringiensis* izolatı toprak örneklerinden izole edilmiştir. Bu izolatlar yeni aktivitelerinin belirlenmesi için aşağıdaki kriterlere göre test edilmiştir: parasporal inklüzyon morfolojisi, SDS-PAGE, *Ephestia kuehniella*' ya karşı toksisitesi ve PCR ile *cry*1, *cry2, cry3, cry4, cry5, cry7, cry8, cry12, cry*21 ve *cyt* genlerinin analizi.

Bulgular: F21 olarak isimlendirilen bir izolat hem *cry*1 hem de *cry*2 genel primerleri ile yapılan PCR analizinde pozitif sonuç vermiştir. Bununla birlikte, F16 ve F19 olarak isimlendirilen iki suş ise yalnızca *cry*2 genel primeri ile pozitif sonuç vermiştir. F21 için PCR ile çoğaltılan *cry*1 gen bölgesi *cry1Ac* geni ile %97 oranında, F21, F19 ve F16 için *cry*2 gen bölgesi ise *cry2Ab* geni ile %96 oranında benzer olarak bulunmuştur. F21 ve F19 izolatları sırasıyla %83 ve %80 ölüm oranları ile *E. kuehniella* larvalarına karşı oldukça yüksek bir toksik etki göstermiştir. Üç *B. thuringiensis* izolatı yaklaşık olarak 130 kDa ve 65 kDa ağırlığında protein bantları oluşturan küresel, baklava dilimli ve yuvarlak yapılı inklüzyonlar üretmektedirler. *E. kuehniella* larvaları için patojen olan F21, F16 ve F19 doğal izolatlarının LC₅₀ değerleri sırasıyla 1.08, 1.48 ve 2.17 olarak belirlenmiştir.

Sonuç: Bu çalışmada test edilen oldukça yüksek toksik aktiviteye sahip *Bacillus thuringiensis* izolatları (F21 ve F19) yeni bir insektisit olarak oldukça ümit verici olabilir ve zararlı böceklere karşı dirençli bitki çeşitlerinin elde edilmesi yada biyopestisitlerin üretimi için kullanılabilir.

Anahtar Kelimeler: Bacillus thuringiensis, biyolojik kontrol, Ephestia kuehniella, biyoassay, depolanmış ürünler

Introduction

Bacillus thuringiensis is a member of a group of crystalliforeus spore forming aerobic, Gram-positive bacteria of the family *Bacillaece* (1). It produces parasporal crystals containing one or more Cry proteins that may be toxic for different insect orders including the ones damaging agricultural plants and products. It is also an alternative to synthetic insecticides that often have unintended harmful effects on non target species. The Cry proteins are encoded by *cry* genes that are frequently carried on plasmids and to date nearly 300 *cry* genes have been identified and classified into 51 groups and subgroups on the basis of amino acid sequence similarity (2).

Because crystal proteins are highly specific and environmentally safe (3), they have been successfully used as bioinsecticides against larvae of Lepidoptera, Diptera and Coleoptera (4-7). These crystal proteins are protoxins that are proteolytically converted into smaller toxic polypeptides in the insect midguts. The activated toxins interact with the midgut epithelium cells of the insects (8).

The growing public concern, stricter environmental regulations, and buildup of resistant biotypes to synthetics insecticides have led to an increased interest in alternative environment-friendly insect control strategies. Thus B. thuringiensis could offer an alternative to chemical insecticides. So far more than 50.000 B. thuringiensis strains have been isolated from several environments such as insects, plants, soil and marine environments (9). Bacillus thuringiensis strains are characterized by using a number of different methods to identify their toxicity against different insect orders (10, 11). Identification of *cry* gene content by PCR is the most effective technique in screening large native collections when predicting insecticidal activities of individual strains (12, 13). Biological activity tests, plasmid contents, 16S rDNA analysis, chromosomal DNA, crystal morphology and protein profiling are also used as complementary methods in the search for novel strains.

In this study, *B. thuringiensis* strains isolated from the soils sampled in Turkey, identification of cry (*cry*1, *cry*2, *cry*3, 10 *cry*4, *cry*5, *cry*7, *cry*8, *cry*12, *cry*14, *cry*21) and *cyt*1 genes was performed by using universal primers. The toxic activities of the gene products were tested against the larvae of Mediterranean flour moth, *Ephestia kuehniella*. Along with toxic activities, crystal protein morphology, Cry protein and plasmid DNA profiles of the representative strains were investigated.

Materials and Methods

Sample collection

Soil samples were taken from six different regions of Ankara Turkey. The samples were collected by scraping off surface material with a sterile spatula and about 10 g samples were obtained from 2–5 cm depth. All samples were placed in sterile plastic bags aseptically and stored at 4°C until processed.

Isolation of strains

Isolation of B. thuringiensis strains was conducted according to the method described by Travers et al (14). One gram of each sample was suspended in 10 ml sterile distilled water and pasteurized at 80°C for 30 min. For the selection of B. thuringiensis 1 ml of each suspension added to 10 ml of Luria-Bertani (Merck, Germany) broth buffered with 0.25 M sodium acetate pH 6.8. The suspensions were incubated at 30°C for 4 h and then heated at 80°C for 3 min. Suspensions were diluted and plated on T3 medium (per liter: 3 g tryptone, 2 g tryptose, 1.5 g yeast extract, 0.05 M sodium phosphate pH 6.8, and 0.005 g of MnCl₂). After incubation at 30°C for 24 h, the colonies showing similar morphology were selected and examined under phase-contrast microscope to determine the presence of parasporal inclusions and spores. The reference strains B. thuringiensis subsp. kurstaki HD-1, B. thuringiensis subsp. kurstaki HD-73, B. thuringiensis subsp. tolworthi HD-125, B. thuringiensis subsp. aizawai HD-137, and B. thuringiensis 916, were kindly provided by Dr. Alejandra Bravo (Instituto de Biotecnologia, Universidad Nacional Autonoma de Mexico).

Determination of cry genes

Molecular characterization was performed to identify the toxin-encoding genes through PCR by using a variety oligonucleotide pairs specific for the following genes/gene families: cry1, cry2, cry3, cry4, cry5, cry7, cry8, cry12, cry14, cry21 and cyt1 (12, 15-19). The PCR mixtures were prepared using 0.2-0.4 µM each of the forward and reverse primers (Table 1), 2U of Taq DNA polymerase, 200 µM dNTP, 10 mM Tris, 50 mM KCl and 1.5mM MgCl,. DNA sample obtained from plasmid in a final volume of 50 µl. PCR conditions were as the following: a single denaturation step for 2 min at 95°C, followed by a 30 amplification cycles including denaturation at 95°C for 1 min, annealing at 48°C for cryl and cry3 genes; 54°C for cry7 gene; 49°C for cry8 gene; 50°C for cry5, cry12, cry14 and cry21 genes; 51°C for cyt1Aa and cytlAb genes for 1 min, elongation at 72°C for 1 min and a final extension at 72°C for 5 min. PCR conditions for cry2 gene were a single denaturation step for 5 min at 94°C, followed by a 25 amplification cycles including denaturation at 94°C for 1 min, annealing at 45°C for 45 s, elongation at 72°C for 2 min and a final extension at 72°C for 10 min. Amplifications were carried out in a thermal cycler (Biometra, Germany). After electrophoresis of 10 µl of each PCR product on 2.5% agarose-EtBr gel, DNA bands were visualized in a gel documentation system (Bio-Doc Analyzer, Germany). PCR product purification and sequencing analysis were performed by Macrogene Inc. (Seoul, Korea).

Table 1. General primers for cry1, cry2, cry3, cry5, cry7, cry8, cry12, cry14, cry21, and cyt1 genes

Primer pair	air Sequence (5'-3')		Product size (bp)	Annealing temperature(°C)	Reference
CJI-1 CJI-2	TGTAGAAGAGGAAGTCTATCCA TATCGGTTTCTGGGAAGTA	cry1	272-290	48	Ceron et al (1995)
II(+) II(-)	TAAAGAAAGTGGGGAGTCTT AACTCCATCGTTATTTGTAG	cry2	1556-1523	45	Sauka et al. (2005)
CJIII-20 CJIII-21	TTAACCGTTTTCGCAGAGA TCCGCACTTCTATGTGTCCAAG	cry3	652-733	48	Ceron et al (1995)
Un4(d) Un4(r)	GCATATGATGTAGCGAAACAAGCC GCGTGACATACCCATTTCCAGGTCC	cry4	439	60	Apaydin et al. (2005)
Un7,8(d)	AAGCAGTGAATGCCTTGTTTAC	cry7	420	54	Ben-Dov et
Un7,8(r)	CTTCTAAACCTTGACTACTT	<i>cry</i> 8 423 4		49	al. (1997)
		cry5	474		
Gral-nem(d)	TTACGTAAATTGGTCAATCAAGCAAA	cry12	477		
Gral-nem(r)	AAGACCAAATTCAATACCAGGGTT	cry14	483	50	Bravo et al. (1998)
		cry21	489		(1000)
Gral-cyt(d)	AACCCCTCAATCAACAGCAAGG	cyt1Aa	522	51	Bravo et al.
Gral-cyt(r)	GGTACACAATACATAACGCCACC	cyt1Ab	525	51	(1998)

SDS-PAGE of δ -endotoxin

The δ – endotoxin analysis was performed by doing SDS-PAGE for characterization of B. thuringiensis using spore/crystal suspensions. B. thuringiensis strains were cultured in T3 liquid medium for sporulation. Particulates from 100 µl of sporulated culture were washed with 1 M NaCl containing 5 mM EDTA and then with 5 mM EDTA alone. Washed crystals and spores were extracted for 5 min at 100°C in 100 µl sample buffer (50 mM Tris-HCl, pH 7.5), 2% (w/v) SDS, 0.05 (w/v) bromophenol blue, 1 mM EDTA, 10% (v/v) glycerol, 15 mM DTT). Insoluble material was removed by centrifugation. The 20 µl aliquots were loaded onto 7.5% acrylamide gels. Following electrophoresis, the gels were stained in 0.1% Coomassie Brilliant Blue G-250. The molecular weights of proteins were determined by using protein standards (Fermentas SMO431) (20).

Scanning Electron Microscopy

B. thuringiensis isolates were incubated in T3 medium by shaking at 250 rpm at 30°C for 7 days. The cell cultures were centrifuged at 4000 rpm for 10 min. The pellets were resuspended in sterile distilled water for 3 times. The cells were fixed in 2.5% glutaraldehyde at 4°C for 12 h, and washed with sterile distilled water. They were dissolved in sterilized distilled water. One drop of the sample was transferred onto a microscope slide and air dried for 5 minutes. Samples were dehydrated serially

with ethanol (50- 100%). The samples were taken into amyl acetate for 30 minutes. This process was repeated twice (21). The critical point drying was done in a Polaron CPD7501 critical point dryer, and then coated with gold on a Polaron SC502 Sputter Coater. The SEM micrographs were taken via a JEOL JSM 6060 LV digital scanning microscope.

Bioassays

Isolates with parasporal bodies were cultured in 100 m1 of T3 liquid medium and incubated for 7 days at 30°C with continuous shaking at 250 rpm. Samples were centrifuged at 5000 rpm for 15 min. Pellets (spores and parasporal protein crystals) were washed in 20 ml sterile distilled water and centrifuged at 5000 rpm for 5 minute. Washing procedure was repeated twice. The pellets were resuspended in 20 ml of sterile distilled water and kept at 4°C. The suspensions of B. thuringiensis strains were examined for their toxicity against third instar larvae of Ephestia kuehniella. The food for larvae was prepared by soaking one gram of peanut pieces in 10 ml of each bacterial suspension for 5 min using three fold serial dilutions $(10^{-1}, 10^{-2}, \text{ and } 10^{-3})$. The food was then dried and placed in a vial where 10 larvae were placed. The toxicity of each strain was assayed in triplicate for either the original toxin-spore suspension or the dilutions. The vials were incubated at 25 ± 2 °C, $70 \pm 10\%$ r.h, and a photoperiod of 16:8 (L:D) for 7 days (22). Mortality was scored in

comparison with parallel control in which peanut pieces soaked in sterile distilled water instead of bacterial suspension and used to correct the test mortality by using Abbot's Formula (23). The LC_{50} values were determined by probit analysis using SPSS for Windows (24).

Results and Discussion

The native strains were isolated according to acetate selection method from soil samples. Twelve isolates were analyzed by phase-contrast microscopy and were selected as *B. thuringiensis* depending on the presence of parasporal crystals. 16S rDNA fragments of the 12 spore forming strains were sequenced and analyzed. According to the results of 16S rDNA sequencing five strains were identified as *B. thuringiensis*.

For detection of crystal genes of *B. thuringiensis* strains, PCR analysis was performed using *cry* gene specific primers. PCR reactions for each isolate were carried out with universal primer for *cry*1, *cry*2, *cry*3, *cry*4, *cry*5, *cry*7, *cry*8, *cry*12, *cry*14, *cry*21, and *cyt*1 genes. Only *cry*1 and *cry*2 primers gave positive results. Among the tested native isolates, F21 was positive for *cry*1 (272 bp) and *cry*2 (1554 bp) primer (Figure 1-2), F16 and F19 were positive for only *cry*2 primer (Figure 2). The other two isolates were negative for the tested cry gene primers.

B. thuringiensis subsp. *kurstaki* HD-1, *B. thuringiensis* subsp. *kurstaki* HD-73, *B. thuringiensis* subsp. *tolworthi* HD-125, *B. thuringiensis* subsp. *aizawai* HD-137, and *B. thuringiensis* 916 were used as positive control for each primer (Figure1-2). While *B. thuringiensis* ssp. *kurstaki* HD-1, *B. thuringiensis* subsp. *kurstaki* HD-73, *B. thuringiensis* subsp. *aizawai* HD-137 and *B. thuringiensis* subsp. *kurstaki* HD-73, *B. thuringiensis* subsp. *aizawai* HD-125 and *B. thuringiensis* ssp. *kurstaki* showed approximately 290 bp. *B. thuringiensis* subsp. *kurstaki* HD-125 exhibited positive PCR product (1554 bp) for cry2 gene primer.

For the identification of different cry2 genes, a 10 µl of positive PCR product was digested with Ddel restriction enzyme according to manufacturer's instructions, analyzed by polyacrylamide (10%) gel electrophoresis and stained with ethidium bromide. The restriction analysis of *B. thuringiensis* reference strains (HD-1, HD-125, Btk) were performed as well. The expected restriction fragment sizes of the known cry2 genes were determined by doing *in silico* digestion of their available sequences in the Bt toxin nomenclature website with the software 'RestrictionMapper' (Table 2) (17). In an agreement with the predicted fragment sizes the polyacrylamide gels showed three main bands of 972, 450 and 134 bp for *cry*2Aa, and two main bands of 1386 and 134 bp for *cry*2Ab (Figure 3). The PCR amplified region of *cry*1 for native strain F21 showed 97% similarity to *cry*1Ac genes (GenBank Accession No. AF492767.1). The sequence of *cry*2 for native strains F16, F19 and F21 revealed 96% similarity to *cry*2Ab gene (GenBank Accession No. EF157306.1).

Figure 1. Detection of *Bacillus thuringiensis* strains' insecticidal genes with *cry1* general primers. Lane 1, *Bt* ssp. *kurstaki* HD-1; lane 2, *Bt* ssp. *kurstaki* HD-73; lane 3, *Bt* ssp. *tolworthi* HD-125; lane 4, *Bt* ssp. *aizawai* HD-137; lane 5, *Bt* 916; lane 6, F21; lane 7, *Bt* ssp. *kurstaki*; lane M- DNA ladder 100 bp.

Figure 2. Detection of *Bacillus thuringiensis* strains' insecticidal genes with *cry2* general primers. Lane M, DNA ladder 100 bp; lane 1, F16; lane 2, F19; lane 3, F21; lane 4, *Bt* ssp. *kurstaki* HD-1; lane 5, *Bt* ssp. *kurstaki* HD-73; lane 6, *Bt* ssp. *tolworthi* HD-125; lane 7, *Bt* ssp. *aizawai* HD-137; lane 8, *Bt* 916; lane 9, *B* t ssp. *kurstaki*.

Table	2	Expected	restriction	fragment	sizes of	digested	crv2	genes	(17)	
Table	4.	Блрескей	restriction	maginem	SIZCS OI	uigesieu	CI y Z	genes	(1)	•

Gene	Fragment size (bp) with Ddel
cry2Aa	972, 450, 134
cry2Ab	1386, 134, 36
cry2Ac	915, 252, 162, 131, 36, 27
cry2Ad	663, 414, 309, 134, 36

Table 3. The profiles of cry genes and parasporal crystal morphology of B. thuringiensis strains.

Isolates	Crystal shape ^a	cry genes
F16	BP, S	cry2
F19	BP	cry2
F21	BP, S, C	cry1, cry2
Bt. ssp. kurstaki	BP, S, C	cry1, cry2
Bt .ssp. kurstaki HD-1	BP, S, C	cry1, cry2
Btssp. kurstaki HD-73	BP, S, C	cry1
Bt. ssp. kurstaki HD-125	BP, S, C	cry1, cry2
Bt. ssp. aizawai HD-137	S	cry1
B. thuringiensis 916	S	cry1

aC: Cuboidal, BP: Bipyramidal, S: Spherical.

Figure 3. PCR-RFLP patterns of *cry*2 genes from *B. thuringiensis* native isolates and references strains. Lane M, DNA ladder 100 bp; lane 1, F16; lane 2, F19; lane 3, F21; lane 4, *Bt* ssp. *kurstaki* HD-1; lane 5, *Bt* ssp. *kurstaki* HD-73; lane 6, *Bt* ssp. *tolworthi* HD-125; lane 7, *Bt* ssp. *aizawai* HD-137; lane 8, *Bt* 916; lane 9, *Bt* ssp. *kurstaki*, lane 10, *Bt* ssp. *kurstaki* HD-1(uncut).

The spore-crystal mixture of the native isolates and the reference strains were analyzed by SDS-PAGE. F21, F16 and F19 isolates were produced major proteins of 130 and 65kDa (Figure 4) consistent with the *cry1 and cry2* genes detected by PCR. All reference strains showed a protein pattern similar to each other except HD137 and HD73. The results revealed that the strains synthesize a protein or a group of proteins with molecular weights between 130 and 140 kDa (consistent with the presence of a *cry1* gene), and a further protein of 65 kDa (consistent with the presence of a *cry2* gene).

The F19 and F21 isolates presented three different crystal inclusions (bipyramidal, cubical and spherical) but F16 exhibited two different crystal inclusions (bipyramidal and spherical) The reference strains HD-1, HD-73 and HD-125 exhibited three kinds of inclusions as in the F21 and F19. However, the other reference strains HD-137 and Bt-916 have only spherical crystals (Figure 5, Table 3).

Cryl and Cry2 proteins are known to be active against lepidopteran insects (25). The toxicities of the crystalspore mixtures of the native isolates and reference strains

were assayed against third-instars of the Mediterranean flour moth Ephestia kuehniella Zeller (Lepidoptera: Pyralidae) larvae. Ephestia kuehniella is one of the major pests in industrial flour mills in temperate climates (26). It causes serious damage in amylaceous products. Apart from direct infestation, the faeces and webbings of larvae spoil the product. For the control of stored-cereal species, including E. kuehniella, the main categories of pesticides used are fumigants and residual grain protectants. However, the use of these substances is being reduced for health and environmental safety reasons (27, 28). Along with the consumers' demand for residue-free food, necessitates the evaluation of alternative, reducedrisk control methods. Insect pathogens, known also as microbials, are among the most promising alternatives to traditional pesticides in stored-product protection (29). The bacterium B. thuringiensis (Berliner) has been approved as a grain protectant in the United States (30), and is commercially available for the control of Indian meal moth larvae. Effective control using B. thuringiensis has been reported against lepidopteran larvae attacking stored products. In this study, a series of bioassays were performed by providing the larvae with food containing the spores and crystals. Spores and crystals were both included in suspensions because they produce higher level of mortality than either crystals or spores alone (31). The F21 isolate (positive for cryl and cry2 genes) presented higher mortality rate (83%) than those of other isolates and the reference strain HD-1 (67%). The F16 and F19 isolates (positive for cry2 gene) were caused mortality rates 57% and 80%, respectively. From the mortality results, six statistically different groups could be seen among the isolates evaluated (ANOVA F= 29,837; df= 9 *p*=0.000) (Figure 6). Apaydin et al. (2005) examined the effects of different B. thuringiensis strains on the E. kuehniella. They found one strain (85PPb) identified as serovar morrisoni, caused a high level of mortality (84%) and was positive for cryl and cry2 genes (18). Similarly, a novel B. thuringiensis strain (serovar *kurstaki*) isolated from Tunisian soils was reported to be toxic to lepidopteran insects including E. kuehniella due to CrylAa, CrylAc and Cry2Aa proteins (32-35).

Figure 4. SDS-PAGE of spore-crystal from *B. thuringiensis* isolates. Lane M, Molecular Marker (Fermentas SMO431), lane 1, F16, lane 2, F19, lane 3, F21, lane 4, *Bt* ssp. *kurstaki*, lane 5, *Bt* ssp. *kurstaki* HD-1, lane 6, *Bt* subsp. *kurstaki* HD-73, lane 7, *Bt* subsp. *tolworthi* HD-125, lane 8, *Bt* ssp. *aizawai* HD-137, lane 9, *Bt* 916.

Figure 5. Scanning electron micrographs of *B. thuringiensis* Crystals. a- F21, b- F16, c- F19, d- *Bt* ssp. *kurstaki* HD-1 (bc: bipyramidal crystal; cc: cuboidal crystal; sc: spherical crystal).

Table 4. Prob	it analysis	of <i>B</i> .	thuringiensis	isolates	and	references	strains
---------------	-------------	---------------	---------------	----------	-----	------------	---------

Isolates	*LC ₅₀	*LC ₉₉	X ²	df	р
B. t. subsp. kurstaki HD-1	1,83	5,78	25,182	2	,0001
B. t. subsp. kurstaki HD-73	3,14	7,21	22,726	2	,0001
B. t. subsp. kurstaki HD125	2,95	9,36	30,502	2	,0001
B. t.subsp. kurstaki HD-137	10,29	26,83	13,008	2	,001
B. thuringiensis 916	3,68	8,56	6,367	2	,001
B. t. subsp. kurstaki	3,71	9,89	3,705	2	,001
F16	2,17	6,56	38,354	2	,0001
F19	1,48	4,58	18,444	2	,0001
F21	1,08	4,06	18,088	2	,0001

^aLC₅₀ and LC₉₉: log (spore concentration ml⁻¹).
$$X^2$$
: Chi-square

Figure 6. Mortality of Ephestia kuehniella larvae fed with diets containing spore-crystal mixture of different B. thuringiensis (Bt) strains.

The toxicity of the crystal-spore mixtures obtained from the isolates and reference strains indicated that the 50% lethal concentration (LC₅₀) and 99% lethal concentration (LC₉₉) of the crystal-spore mixtures for *E. kuehniella* larvae varied from 1.08 to 10.29 (spore concentration ml⁻1), and from 4.06 to 26.83 (spore concentration ml⁻ 1), respectively. The most pathogenic native isolates for *E. kuehniella* larvae were F21, F19 and F16, with LC₅₀ values of 1.08, 1.48, and 2.17, respectively. Among the tested reference strains, the most pathogenic one was *B*. *thuringiensis* ssp. *kurstaki* HD-1 (LC₅₀: 1.83). In the reference strain group, the LC₅₀ values for *B*. *thuringiensis* ssp. *tolworthi* HD-125, *B*. *thuringiensis* ssp. *kurstaki* HD-73, *B*. *thuringiensis* ssp. *kurstaki*, *B*. *thuringiensis* 916, and *B*. *thuringiensis* ssp. *aizawai* HD-137 were 2.95, 3.14, 3.68, 3.71 and 10.29, respectively (Table 4).

B. thuringiensis has been commercially used in the biological control of insect pests for the last four decades. The highly bioactive native *B. thuringiensis* isolates (F21 and F19) tested in this work appeared highly promising for new insecticide formulations and could be used for engineering pest resistant plants or in production of novel biopesticides. Our results indicate the presence of *B. thuringiensis* isolates showing insecticidal activity from soil samples in Ankara, Turkey. Future studies will deal with characterization of toxic agent(s) of our isolates, bioactivity assays against different pests and their probable use in industry.

Acknowledgments

This study was supported by the Gazi University Research Fund. We thank Dr. Alejandra Bravo (Instituto de Biotecnologia, Universidad Nacional Autonoma de Mexico) for providing references strains.

References

- Schnepf E, Crickmore N, Van Rie J, Lereclus D, Baum J, Feitelson J, Zeigler DR, Dean D. (1998) Bacillus thuringiensis and its pesticidal crystal proteins. Microbiol Mol Biol Rev 62:775-806.
- [2] Crickmore N, Zeigler DR, Feitelson J, Schnepf E, Van-Rie J, Lereclus D, Baum J, and Dean DH. (2007) Bacillus thuringiensis toxin nomenclature. http://www.lifesci.sussex.ac.uk/Home /Neil Crickmore /Bt
- [3] Krieg A, Langenbruch GA. (1981) Susceptibility of arthropod species to Bacillus thuringiensis. In: Burges, H. D. (Ed.), Microbial control of pests and plant diseases 1970–1980, Academic Pres, New York, pp. 837–896.
- [4] Feitelson JS, Payne J, Kim L. (1992) Bacillus thuringiensis: insects and beyond. Biotechnol 10: 271–275.
- [5] Kuo WS, Chak KF. (1996) Identification of novel cry-type genes from Bacillus thuringiensis strains on the basis of restriction fragment length polymorphism of the PCR-amplified DNA. Appl Environ Microbiol 62:1369-1377.
- [6] Aranda E, Sanchez J, Peferoen M, Guereca L, Bravo A. (1996) Interactions of Bacillus thuringiensis crystal proteins with the midgut epithelial cells of Spodoptera frugiperda (Lepidoptera: Noctuidae). J Invertebr Pathol 68: 203–212.
- [7] Bohorova N, Maciel AM, Brito RM, Aguilart L, Ibarra JE, Hoisington D. (1996) Selection and characterization of Mexican strains of Bacillus thuringiensis active against four major lepidopteran maize pests. Entomophaga 41: 153–165.
- [8] Hofte H, Whitely HR. (1989) Insecticidal crystal proteins of Bacillus thuringiensis. Microbiol Rev 53: 242–258.
- [9] Sadder MT, Horani HK, Al-Banna L. (2006) Application of RAPD technique to study polymorphism among Bacillus thuringiensis isolates from Jordan. World J Microbiol Biotechnol 22:1307-1312.
- [10] Arango JA, Romero M, Orduz S. (2002) Diversity of Bacillus thuringiensis strains from Colombia with insecticidal activity against Spodoptera frugiperda (Lepidoptera: Noctuidae). Journal of Applied Microbiology 92:466-474.
- [11] Martinez C, and Caballero P. (2002) Contents of cry genes and insecticidal toxicity of Bacillus thuringiensis strains from terrestrial and aquatic habitats. Journal of Applied Microbiology 92: 745-752.
- [12] Ben-Dov E, Zaritsky A, Dahan E, Barak Z, Sinai R, Manasherob R, Khamraev A, Troitskaya E, Dubitsky A, Berezina N, Margalith Y. (1997) Extended screening by PCR for seven crygroup genes from field collected strains of Bacillus thuringiensis. Appl Environ Microbiol 63: 4883–4890.
- [13] Porcar M, Juarez-Perez V. (2003) PCR-based identification of Bacillus thuringiensis pesticidal crystal genes. FEMS Microbiol Rev 26: 419-432.
- [14] Travers RS, Martin PAW, Reichelderfer CF. (1987) Selective process for efficient isolation of soil Bacillus sp. Appl Environ Microbiol 53:1263–1266.
- [15] Ceron J, Ortiz A, Quintero R, Güereca L, Bravo A. (1995) Specific PCR primers directed to identify cryI and cryIII genes within a Bacillus thuringiensis strain collection. Appl Environ Microbiol 61: 3826-3831.
- [16] Bravo A, Sarabia S, Lopez L, Ontiveros H, Abarca C, Ortiz A, Ortız M, Lina L, Villalobos FJ, Pena G, Nunez-Valdez M, Soberon M, Quintero R. (1998) Characterization of cry genes in

a Mexican Bacillus thuringiensis strain collection. Appl Environ Microbiol, 4965–4972.

- [17] Sauka DH, Cozz JG, Benintende B. (2005) Screening of cry2 genes in Bacillus isolates from Argentia. Antonie van Leeuwenhoek 88:163-165.
- [18] Apaydin O, Yenidunya AF, Harsa S, Gunes H. (2005) Isolation and characterization of Bacillus thuringiensis strains from different grain habitats in Turkey. World J Microbiol Biotechnol 21: 285–292.
- [19] Carozzi NB, Kramer VC, Warren GW, Evola S, Koziel MG. (1991) Prediction of insecticidal activity of Bacillus thuringiensis strains by polymerase chain reaction product profiles. Appl Environ Microbiol 57: 3057-3061.
- [20] Damgaard HP, Granum EP, Bresciani J, Torregrossa MV, Eilenberg J, Valentino L. (1997) Characterization of Bacillus thuringiensis isolated from inections in burn wounds. FEMS Immunol Medicinal Microbiol 18: 47-53.
- [21] Suludere Z, Kalender Y, Çakmakçı L, Alten, B., Ayvalı C, Çetinkaya G. (1992) Türkiye'nin çeşitli yörelerinden izole edilen bazı Bacillus sphaericus ve Bacillus thuringiensis suşlarının spor ve parasporal kristallerinin elektron mikroskobuyla incelenmesi. Doğa-Tr. J of Agricul Forestry 16: 1-14.
- [22] Obeidat M, Hassawi D, Ghabeish I. (2004) Characterization of Bacillus thuringiensis strains from Jordan and their toxicity to the Lepidoptera. Ephestia kuehniella Zeller. African J Biotechnol 3: 622-626.
- [23] Abbot WS. (1925) A method of computing the effectiveness of an insecticide. J Econ Entomol 18: 265-267.
- [24] SPSS Version 10.0. SPSS Inc, (2001) 233 S. Wacker Drive, Chicago, Illinois.
- [25] Bobrowski VL, Pasquali G, Bodanese-Zanettini MH, Fiuza LM. (2001) Detection of cry1 genes in Bacillus thuringiensis isolates from South of Brazil and activity against Anticarsia gemmatalis (Lepidoptera:Noctuidae). Brazilian J Microbiol 32: 105–109.
- [26] Jacob TA, Cox PD. (1977) The influence of temperature and humidity on the life-cycle of Ephestia kuehniella Zeller (Lepidoptera: Pyralidae). J Stored Prod Res 13: 107–118
- [27] Arthur FH. (1996) Grain protectants: current status and prospects for the future. Journal of Stored Products Research 32: 293–302.
- [28] Bell CH. (2000) Fumigation in the 21st century. Crop Protection 19:563–569.
- [30] Brower JH, Smith L, Vail PV, and Flinn PW. (1995) Biological control. In: Subramanyam, B., and Hagstrum, D.W., (Ed), Integrated Management of Insects in Stored Products. Marcel Dekker, New York, pp. 223–286.
- [29] Moore D, Lord JC, Smith S. (2000) Pathogens. In: Subramanyam, Bh., Hagstrum, D.W. (Eds.), Alternatives To Pesticides in Stored- Product IPM. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 193–227.
- [31] Thomas W, Ellar D. (1983) Bacillus thuringiensis var. israelensis crystal δ-endotoxin: effects of insect and mammalian cells in vitro and in vivo. J Cellular Science 60:181-197.
- [32] Tounsi S, J'Mal A, Zouari N, Jaoua S. (1999) Cloning and nucleotide sequence of 435 a novel cry1Aa-type gene from Bacillus thuringiensis subsp. kurstaki. Biotechnology Letters 21:771-775.
- [33] Tounsi S, Jaoua S. (2002) Identification of a promoter for the crystal protein-encoding gene cry11a from Bacillus thuringiensis subsp. kurstaki. FEMS Microbiology Letters 208:215-218
- [34] Tounsi S, Jaoua S. (2003) Characterization of a novel cry2Aatype gene from Bacillus thuringiensis subsp. kurstaki. Biotechnology Letters 25:1219-1223.
- [35] Tounsi S, Zouari N, Jaoua S. (2003) Cloning and study of the expression of a novel cry1Aa-type gene from *Bacillus thuringi*ensis subsp. kurstaki. Journal of Applied Microbiology 94:1-6.