Research Article [Araştırma Makalesi

Yayın tarihi 30 Aralık, 2013 © TurkJBiochem.com

Anti-prothrombin antibodies in type 1 Diabetes Mellitus

[Tip 1 Diabetes Mellitus'ta Anti-protrombin antikorlari]

Filiz Bakar¹, Uğur Ünlütürk², Nilgün Başkal², Serpil Nebioğlu¹

¹Ankara University Faculty of Pharmacy, Department of Biochemistry, Ankara, Turkey ²Ankara University School of Medicine, Department of Endocrinology and Metabolism, Ankara, Turkey

Yazısma Adresi [Correspondence Address]

Filiz Bakar

Department of Biochemistry, Faculty of Pharmacy, Ankara University Dögol Caddesi, 06100 Tandoğan Ankara, Turkey. Tel Fax. E-mail. flzbakar@yahoo.com

Registered: 27 March 2013; Accepted: 21 October 2013 [Kayıt Tarihi: 27 Mart 2013; Kabul Tarihi: 21 Ekim 2013]

ABSTRACT

Aim: Type 1 diabetes mellitus (T1DM) is an autoimmune disease, and autoimmunity related prothrombotic factors might contribute to the hypercoagulable state seen in T1DM. The aim of this study is to investigate the presence of anti-prothrombin (aPT) antibodies as a prothrombotic risk factor in patients with T1DM.

Materials and Methods: The study was performed with 121 type 1 diabetic patients, who were admitted to the Endocrinology and Metabolism outpatient clinic, and 92 healthy volunteers without history of any vascular, thromboembolic or hemorrhagic disease were included as controls. The quantitative determination of aPT IgG, IgM and anti-β2-glycoprotein-1 (anti- β 2GP1) IgG antibodies in plasma samples were performed using commercially available ELISA kits according to manufacturer's instructions.

Results: aPT IgG antibodies present for the type 1 diabetic and control groups were 52.06% and 2.16% respectively. The circulating levels of aPT IgG was significantly higher in type 1 diabetics (20.17±8.28 AU/ml) when compared to controls (4.47±2.01 AU/ml, p<0.05). 88.42% of type 1 diabetic patients showed elevated aPT IgM levels (16.12±6.01 AU/ml) that were significantly higher than the control group (4.86±2.62 AU/ml, p<0.05). Similarly, 69.42% of type 1 diabetic patients were positive for anti-β2GP1 IgG antibodies with significantly higher levels than the control group (7.72±1.11 U/ml, 0.81±0.32 U/ml, respectively).

Conclusion: aPT antibody levels are significantly increased in patients with T1DM when compared to controls. Similarly, the plasma levels of anti-B2GP1 IgG antibodies, an important marker of coagulation cascade, were found significantly elevated in type 1 diabetic group. These data suggest that the higher levels of aPT antibodies seen in type 1 diabetic patients may contribute to the development of hypercoagulability in T1DM.

Key Words: Type 1 diabetes, thrombosis, anti-prothrombin, anti-β2GP1

Conflict of Interest: Authors have no conflict of interest.

ÖZET

Amaç: Tip 1 Diabetes Mellitus (T1DM) otoimmün bir hastalıktır ve otoimmünite ile ilişkili protrombotik faktörler T1DM'de görülen koagülasyona yatkınlığa katkıda bulunabilirler. Bu çalışmanın amacı, Tip 1 diyabet hastalarında bir protrombotik risk faktörü olarak antiprotrombin (aPT) antikorlarının düzeyinin araştırılmasıdır.

Gereç ve Yöntemler: Bu çalışma, Endokrinoloji ve Metabolizma Kliniği'ne gelen tip 1 diyabet tanısı almış 121 gönüllü hasta ile gerçekleştirilmiştir. Herhangi bir vasküler, tromboembolik ya da hemorajik hastalığı olmayan 92 gönüllü ise kontrol grubunu oluşturmuştur. Plazma örneklerindeki aPT IgG, IgM ve anti-β2-glikoprotein-1 (anti-β2GP1) IgG antikorları ELISA kitleri kullanılarak saptanmıştır.

Bulgular: aPT IgG antikorları tip 1 diyabetik grupta %52.06 iken, kontrol grubunda %2.16 bulunmuştur. Dolaşımdaki aPT IgG düzeyi, tip 1 diyabetik grupta (20.17±8.28 AU/ ml), kontrole göre (4.47±2.01 AU/ml) anlamlı olarak yüksek bulunmuştur (p<0.05). Tip 1 diyabetik hastaların %88.42'sinde, saptanan artmış aPT IgM düzeyleri (16.12±6.01 AU/ ml), kontrol grubuna göre (4.86±2.62 AU/ml) anlamlı olarak yüksek bulunmuştur (p<0.05). Tip 1 diyabetik hastaların %69.42'si anti-β2GP1 IgG pozitif olarak saptanmıştır ve plazma düzeyleri kontrol grubuna göre anlamlı olarak yüksektir (7.72±1.11 U/ml, 0.81±0.32 U/ml, sırasıyla).

Sonuç: aPT antikorları, kontrol grubu ile karşılaştırıldığında, T1DM hastalarında anlamlı olarak yüksek bulunmuştur. Benzer şekilde koagülasyon yolağında önemli bir belirteç olan anti-β2GP1 antikor düzeyinin de tip 1 diyabetik grupta anlamlı olarak yüksek olduğu saptanmıştır. Elde edilen bulgular, tip 1 diyabet hastalarında gözlenen yüksek aPT antikor düzeylerinin, T1DM'de hiperkoagülasyon gelişimine katkıda bulunabileceğini göstermektedir.

Anahtar Kelimeler: Tip 1 diyabet, tromboz, anti-protrombin, anti-β2GP1 Çıkar Çatışması: Yazarlar çıkar çatışması bulunmadığını beyan ederler.

432

Introduction

In the last decade, anti-phospholipid (aPL) antibodies have been identified in various autoimmune diseases including anti-phospholipid syndrome (APS) and systemic lupus erythematosus [1-3]. Anti-phospholipid antibodies may recognize a variety of antigens such as phospholipid binding proteins and protein-phospholipid complexes [4-6]. Of these plasma proteins, prothrombin (PT) is identified as one of the major antigenic targets for those antibodies [7]. After the presence of antiprothrombin antibodies (aPT) in the plasma of lupus anticoagulant positive patients was shown [8], their role in development of thrombosis has also been reported in several autoimmune diseases [9-12].

The prothrombotic factors and hypercoagulable state affect the rate of morbidity and mortality in type 1 diabetes mellitus [13,14]. Vascular inflammation, endothelial dysfunction, impaired fibrinolysis and abnormal platelet function contribute to the increased thromboembolic events in diabetic patients [15].

 β 2GP1, also known as apolipoprotein H, is an abundant phospholipid-binding protein which circulates in the plasma [16]. Recent studies have demonstrated that β 2GP1 may interact directly with the components of the plasminogen activator system and affect the generation of cell surface and plasma fibrinolytic activity [17,18].

Although T1DM is an autoimmune disease, there is no study evaluating the presence of aPT antibodies in this disease. Therefore in the present study we aimed to evaluate the presence of aPT antibodies in patients with T1DM.

Materials and Methods

Subjects

125 patients, who were previously diagnosed with type 1 diabetes, were evaluated for this study. 121 of those patients, including 57 women and 64 men with a mean age of 29±9 years, who were admitted to the Endocrinology and Metabolism outpatient clinic at Ankara University School of Medicine were included. The exclusion criteria of the study were: personal history of any thromboembolic or hemorrhagic disease, use of any medication or substance that effects hemostasis, patients with any kind of diagnosed malignancy. Ninetytwo volunteers with normal fasting plasma glucose levels and no history of any vascular, thromboembolic or hemorrhagic diseases were included in control group. The study was approved by the local ethics committee, and informed consent was obtained from each participant before enrollment. Venous blood samples were collected into vacutainer serum separating tubes (Greiner bioone, Germany). Samples were immediately centrifuged at 1000 x g for 10 minutes at room temperature, and separated sera were stored frozen at -80°C until assayed.

Biochemical measurements

Glycated hemoglobin (HbA1c) levels were analyzed in an ADAMS A1c HA-8160 analyzer (Arkray Inc., Kyoto, Japan) by high performance liquid chromatography (HPLC).

Anti-prothrombin antibodies

The quantitative determination of anti-prothrombin (aPT) IgG antibodies was performed using commercially available ELISA kits according to manufacturer's instructions (American Diagnostica Inc., Stamford, CT, United States). Results are expressed in units relative to the calibrator as Arbitrary Unit (AU) /ml as follows: negative < 10 AU/ml, 'grey zone' 10-20 AU/ml, low positive \geq 20 - <50 AU/ml, moderate positive \geq 50 - <100 AU/ml and high positive \geq 100 AU/ml. Arbitrary unit is a relative unit of measurement to show the ratio of amount of substance, intensity or other quantities to a predetermined reference measurement. The calculated intra- and inter-assay coefficients of variation were 4.2% and 5.2%, respectively.

Anti-prothrombin IgM antibody levels were detected by anti-Prothrombin IgM ELISA kit (DRG Instruments, GmbH, Germany, Marburg). The analytical sensitivity was 1.0 U/ml. The calculated overall intra-assay and inter-assay coefficients of variation were 4.2% and 5.9%, respectively. aPT IgM antibody levels are expressed as follows: 'normal' <10 AU/ml and 'elevated' ≥10 AU/ml.

Anti- $\beta(2)$ -glycoprotein 1 IgG antibodies

The quantitative determination of anti- β 2GP1 IgG antibodies was performed using commercially available ELISA kits according to manufacturer's instructions (Orgentec Diagnostica GmbH, Mainz, Germany). Results are expressed in units relative to the calibrator (U/ml) as follows: negative < 5 U/ml and positive > 8 U/ml. Functional sensitivity was 0.5 U/ml. The calculated overall intra-assay and inter-assay coefficients of variation were 7.9% and 2.1%, respectively.

Statistical analyses

The data for anti-prothrombin and anti- β 2GP1 antibody levels were expressed as mean±SD and compared using Student's t test. ROC curve analysis was applied and the areas under the curve (AUCs) were calculated. Correlation analyses were performed within the Pearson correlation test. Statistical analyses were performed by SPSS (version 15; SPSS Inc., Chicago, IL) and p-values of less than 0.05 were considered as statistically significant.

Results

The demographic and clinical characteristics of the study groups are shown in Table 1. Age, body mass index and smoking habits were similar between patients with T1DM and control subjects. The mean HbA1c level of diabetic patients (9.56%) was significantly higher than the control group (5.03%, Table 1).

aPT IgG antibodies were present in 63/121 (52.06%) of the type 1 diabetic group whereas only two controls were positive for aPT IgG antibodies (Table 2). The circulating levels of aPT IgG was significantly higher in type 1 diabetics (20.17±8.28 AU/ml) when compared to controls (4.47±2.01 AU/ml, p<0.05) (Figure 1, Table 3). 88.42% of type 1 diabetic patients had elevated aPT IgM and anti- β 2GP1 IgG levels, and the mean aPT IgM and anti- β 2GP1 IgG levels was significantly higher than the control group (Table 3).

To investigate the diagnostic value of aPT IgG, IgM and anti- β 2GP1 IgG, the ROC curves were produced and the area under the curve (AUC) calculated (Figure 2). The results of ROC analysis and the corresponding diagnostic indices are summarized in Table 4. The areas under the respective ROC curves were 1.00 (aPT IgG), 0.97 (aPT IgM) and 0.99 (anti- β 2GP1 IgG).

The correlation analysis showed that there was no significant correlation between aPT IgG / IgM and anti- β 2GP1 IgG antibodies.

Discussion

In this study, we demonstrated that aPT IgG and IgM antibody levels were significantly higher in type 1 diabetic patients when compared to healthy controls.

It was previously reported that high aPT antibody levels were a risk factor for the development of myocardial infarction, cardiac death or any sort of thrombotic events in middle-aged men [7]. Although, some studies [19,20] have reported that there was no significant correlation between aPT IgG/IgM antibodies and thrombosis in lupus anticoagulant positive patients, the presence of anti-phosphatidylserine/anti-prothrombin was correlated with increased thrombin formation in patients with APS [21].

Antiphospholipid antibodies are known to bind to plasma proteins with an affinity for phospholipids' surfaces [22-25]. Prothrombin is another important autoantigen recognized by anti-phospholipid antibodies [26,27]. The role of the anti-prothrombin (aPT) antibodies in the development of thrombosis has been evaluated

 Table 1. Demographic and clinical characteristics of the study groups. Statistical comparisons were performed between type 1 diabetic patients (T1DM) and controls.

	Variable	Case group (n=121)	Control Group (n=92)	p value
	Age, mean±SD	29±9 (17-59 year)	30±9 (18-54 year)	NS
	Female, n (%)	57 (47.1%)	35 (38%)	NS
	Male, n (%)	64 (52.9%)	57 (62%)	NS
	BMI (kg/m ²)	23.12±4.49	22.78±2.12	NS
Du	ration of diabetes (year)	11±9.5	-	NA
	Smoker (%)	19	16	NS
HbA1c	, % (mmol/mol)	9.56±2.77 (81±9)	5.03±0.69 (32±7)	<0.001*

BMI: Body mass index; HbA1c: Glycated hemoglobin. NS: non-significant; NA: not-applicable; SD: standard deviation. The HbA1c levels between 4.5 - 6 % were accepted normal. *p < 0.05 was considered as statistically significant.

Table 2. Distribution of aPT IgG, IgM and anti-β2GP1	IgG according to groups.
--	--------------------------

	Case group (n=121)	Control group (n=92)	p value
aPT IgG, n (%)			
Antibody-negative	10 (8.27%)	86 (93.5%)	0.001
Grey zone	48 (39.67%)	4 (4.34%)	0.001
Antibody-positive	63 (52.06%)	2 (2.16%)	0.001
aPT lgM, n (%)			
Normal	14 (11.58%)	87 (94.6%)	0.001
Elevated	107 (88.42%)	5 (5.4%)	0.001
anti-β2GP1 IgG, n (%)			
Negative	37 (30.58%)	92 (100%)	0.001
Borderline	-	-	NA
Positive	(69.42%)	- (0%)	0.001

aPT IgG results are expressed in units relative to the calibrator, Arbitrary Unit (AU) /ml, as follows: negative < 10 AU/ml, 'grey zone' 10-20 AU/ml, positive \geq 20 AU/ml. aPT IgM antibody levels are expressed as follows: 'normal' <10 AU/ml and 'elevated' \geq 10 AU/ml. Anti- β 2GP1 IgG results are expressed in units relative to the calibrator (U/ml) as follows: negative < 5 U/ml, borderline 5-8 U/ml, positive > 8 U/ml. p<0.05 is considered as statistically significant. aPT: anti-prothrombin; β 2GP1: β -2-glycoprotein 1, NA; non-applicable.

	Case group (n=121)	Control group (n=92)	p value
aPT IgG (AU/ml)	20.17±8.28	4.47±2.01	0.001*
aPT IgM (AU/mI)	16.12±6.01	4.86±2.62	0.001*
anti-β2GP1 IgG (U/ml)	7.72±1.11	0.81±0.32	0.001*

The results are expressed as mean \pm standard deviation. Statistical comparisons were performed between type 1 diabetic patients and controls. *p <0.05 between patients and controls. aPT: antiprothrombin; β 2GP1: β -2-glycoprotein 1; AU: Arbitrary Unit.

Table 4. Summary of the receiver operating characteristic curve analysis for aPT IgG, IgM and aβ2GP1 IgG antibody levels.

	aPT lgG	aPT IgM	aβ2GP1 lgG
AUC	1.00 ± 0.00	0.977 ± 0.02	0.993 ±0.01
p value	<0.001	<0.001	<0.001
Cut-off	20 AU/ml	10 AU/ml	8 U/ml
95% CI	1.000 : 1.000	0.932 : 1.000	0.976 : 1.000
Sensitivity	100.0%	93.3%	75.0%
Specificity	41.2%	84.2%	100.0%
LR (+)	1.70	5.91	00
LR (-)	0	0.079	0.25

,The areas under the curves were expressed as AUC \pm standard error. The cutoff values for sensitivity and specificity analysis were 20 AU/ml for aPT IgG, 10 AU/ml for aPT IgM and 8 U/ml for a β 2GP1 IgG. AUC: Area under curve. AUC: area under curve; CI: confidence interval; LR: likelihood ratio.

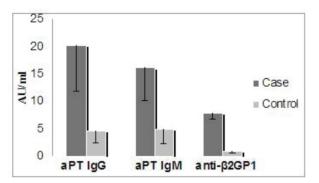


Figure 1. aPT IgG, IgM and anti- β 2GP1 IgG levels between type 1 diabetic and control groups. The results are expressed as mean \pm SD.

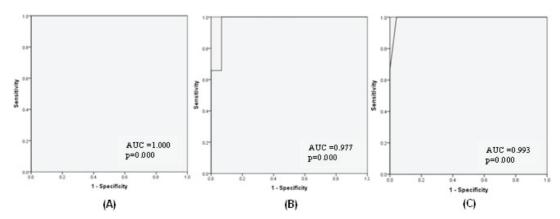


Figure 2. Receiver operating characteristic curves. The sensitivity and 1-specificity were plotted for (A) aPT IgG, (B) aPT IgM and (C) anti- β 2GP1 IgG. The areas under the curve (AUCs) and the *p* values were indicated.

and significant associations have been reported in several autoimmune diseases [28-36]. Yang et al. [26] demonstrated the aPT antibodies with prothrombinase activity and suggested that these catalytic aPT antibodies might contribute to thrombosis observed in APS patients. The present study also showed that aPT antibodies might be one of the prothrombotic risk factors for type 1 diabetic patients.

 β 2GP1 is identified as a major target antigen in patients with APS as well [37]. It has been suggested that β 2GP1 and β 2GP1-reactive antibodies may have direct interactions with the fibrinolytic system [38-39]. In our study, we found elevated anti- β 2GP1 IgG antibodies in the plasma samples of type 1 diabetic patients. Bu et al. [40] identified the role of β 2GP1 in the regulation of fibrinolysis by showing that β 2GP1 interacts with tissue plasminogen activator (tPA) and induces tPA-dependent plasminogen activation in the fluid phase, and that this process is inhibited by β 2GP1 antibodies.

By preliminary analysis, aPT IgG had the best diagnostic value with an AUC 100%, (p=0.000) and anti- β 2GP1 IgG with an AUC over 99%. As with the cutoff value of 20 AU/ml, aPT IgG had the best ROC curve. The statistical analysis also showed that aPT IgG has the best likelihood ratio with the lowest LR(-) value.

In conclusion, this is the first study evaluating the plasma levels of aPT antibodies in type 1 diabetic patients. When compared with healthy controls, aPT antibodies were significantly increased in patients with T1DM. We have also determined that the levels of anti- β 2GP1, which is known to inhibit the fibrinolytic activity, were significantly higher in the case group. These data suggest that the higher levels of aPT IgG and IgM determined in type 1 diabetic patients may contribute to the development of hypercoagulability in T1DM. Further studies are necessary to elucidate the clinical impact of these changes in type 1 diabetes.

Acknowledgements

This study was supported by The Scientific and Technological Research Council of Turkey, Grant SBAG-111S249.

Conflict of Interest: Authors have no conflict of interest.

REFERENCES

- [1] Bertolaccini ML. Antibodies to prothrombin. Lupus 2012; 21:729-731.
- [2] Devreese K, Hoylaerts MF. Challenges in the diagnosis of the antiphospholipid syndrome. Clin Chem 2010; 56:930-940.
- [3] Lackner KJ, Peetz D, von Landenberg P. Revision of the Sapporo criteria for the antiphospholipid syndrome - coming to grips with evidence and Thomas Bayes? Thromb Haemost 2006; 95:917-919.
- [4] Simmelink MJ, Horbach DA, Derksen RH, Meijers JCM, Bevers EM, *et al.* Complexes of anti-prothrombin antibodies and prothrombin cause lupus anticoagulant activity by competing with the binding of clotting factors for catalytic phospholipid surfaces. Br J Haematol 2001; 113:621-629.

- [5] Atkinson MA, Eisenbarth GS. Type 1 diabetes: new perspectives on disease pathogenesis and treatment. Lancet 2001; 358:221-229.
- [6] Rand JH, Wu XX, Andree HAM, Ross JBA, Rusinova E, et al. Antiphospholipid antibodies accelerate plasma coagulation by inhibiting Annexin-V binding to phospholipids: A "Lupus Procoagulant" phenomenon. Blood 1998; 92:1652-60.
- [7] Atsumi T, Koike T. Clinical relevance of antiprothrombin antibodies. Autoimmun Rev 2002; 1:49-53.
- [8] Edson JR, Vogt JM, Hasegawa DK. Abnormal prothrombin crossed-immunoelecrophoresis in patients with lupus inhibitors. Blood 1984; 64:807-816.
- [9] Bizzaro N, Ghirardello A, Zampieri S, Iaccarino L, Tozzoli R, et al. Anti-prothrombin antibodies predict thrombosis in patients with systemic lupus erythematosus: A 15-year longitudinal study. J Thromb Haemost 2007; 5:1158-64.
- [10] Zanon E, Saggiorato G, Ramon R, Girolami A, Pagnan A, et al. Anti-prothrombin antibodies as a potential risk factor of recurrent venous thromboembolism. Thromb Haemost 2004; 91(2):255-258.
- [11] Galli M, Luciani D, Bertolini G, Barbui T. Anti-β2-glycoprotein I, antiprothrombin antibodies, and the risk of thrombosis in the antiphospholipid syndrome. Blood 2003; 102(8):2717-23.
- [12] Ishikura K, Wada H, Kamikura Y, Hattori K, Fukuzawa T, et al. High prevalence of anti-prothrombin antibody in patients with deep vein thrombosis. Am J Hematol 2004; 76:338-342.
- [13] Targher G, Chonchol M, Zoppini G, Franchini M. Hemostatic disorders in type 1 diabetes mellitus. Semin Thromb Hemost 2011; 37(1):58-65.
- [14] Jörneskog G, Egberg N, Fagrell B, Fatah K, Hessel B, et al. Altered properties of the fibrin gel structure in patients with IDDM. Diabetologia 1996; 39:1519-23.
- [15] Carr ME. Diabetes mellitus: a hypercoagulable state. J Diabetes Complications 2001; 15:44-54.
- [16] Kamboh MI, Mehdi H. Genetics of apolipoprotein H (fl2glycoprotein I) and anionic phospholipid binding. Lupus 1998; 7:10-13.
- [17] Yasuda S, Atsumi T, Ieko M, *et al.* Nicked β2-glycoprotein I: a marker of cerebral infarct and a novel role in the negative feedback pathway of extrinsic fibrinolysis. Blood 2004; 103:3766-72.
- [18] Lopez-Lira F, Rosales-Leon L, Martinez VM, Ruiz Ordaz BH. The role of beta2-glycoprotein I (beta2GPI) in the activation of plasminogen. Biochim Biophys Acta 2006; 1764:815-823.
- [19] Sailer T, Vormittag R, Zoghlami C, Koder S, Quehenberger P, et al. The clinical significance of anti-prothrombin antibodies for risk assessment of thromboembolism in patients with lupus anticoagulant. Thromb Res 2007; 120:295-302.
- [20] Jaskowski TD, Wilson AR, Hill HR, Branch WD, Tebo AE. Autoantibodies against phosphatidylserine, prothrombin and phosphatidylserine-prothrombin complex: identical or distinct diagnostic tools for antiphospholipid syndrome? Clin Chim Acta 2009; 410(1-2):19-24.
- [21] Sakai Y, Atsumi T, Ieko M, Amengual O, Furukawa S, *et al.* The effects of phosphatidylserine-dependent antiprothrombin antibody on thrombin generation. Arthritis Rheum 2009; 60(8):2457-67.
- [22] Hwang KK, Yang CD, Yan W, Grossman JM, Hahn BH, et al. A thrombin-cross-reactive anticardiolipin antibody binds to and inhibits the anticoagulant function of activated protein C. Arthritis Rheum 2003; 48:1622–30.
- [23] Lu CS, Horizon AA, Hwang KK, FitzGerald J, Lin WS, et al. Identification of polyclonal and monoclonal antibodies against tissue plasminogen activator in the antiphospholipid syndrome. Arthritis Rheum 2005; 52:4018-27.

- [24] Yang YH, Hwang KK, FitzGerald J, Grossman JM, Taylor M, et al. Antibodies against the activated coagulation factor X (FXa) in the antiphospholipid syndrome that interfere with the Fxa inactivation by antithrombin. J Immunol 2006; 177:8219–25.
- [25] Al-Homood I. Thrombosis in systemic lupus erythematosus: A review article. ISRN Rheumatology 2012; doi:10.5402/2012/428269.
- [26] Yang Y, Chang C, Chuang Y, Hsu H, Chen PP. Identification of anti-prothrombin antibodies in the anti-phospholipid syndrome that display the prothrombinase activity. Rheumatology 2010; 49:34-42.
- [27] Tsutsumi A, Hayashi T, Chino Y, Mamura M, Goto D, et al. Significance of antiprothrombin antibodies in patients with systemic lupus erythematosus: clinical evaluation of the antiprothrombin assay and the antiphosphatidylserine/prothrombin assay, and comparison with other antiphospholipid antibody assays. Mod Rheumatol 2006; 16:158–164.
- [28] Von Landenberg P, Matthias T, Zaech J, Schultz M, Lorber M, et al. Antiprothrombin antibodies are associated with pregnancy loss in patients with the antiphospholipid syndrome. Am J Reprod Immunol 2003; 49:51-56.
- [29] Galli M, Willems GM, Rosing J, Janssen RM, Govers-Riemslag JW, et al. Anti-prothrombin IgG from patients with anti-phospholipid antibodies inhibits the inactivation of factor Va by activated protein C. Br J Haematol 2005; 129:240-247.
- [30] Ghirardello A, Bizzaro N, Zampieri S, Iaccarino L, Bassi N, et al. Biological and clinical relevance of anti-prothrombin antibodies. Ann N Y Acad Sci 2007; 1109:503-510.
- [31] Bertolaccini ML, Atsumi T, Khamashta MA, Amengual O, Hughes GR. Autoantibodies to human prothrombin and clinical manifestations in 207 patients with systemic lupus erythematosus. J Rheumatol 1998; 25:1104-08.
- [32] Sorice M, Pittoni V, Circella A, Misasi R, Conti F, et al. Antiprothrombin but not "pure" anti-cardiolipin antibodies are associated with the clinical features of the antiphospholipid antibody syndrome. Thromb Haemost 1998; 80:713-715.
- [33] Hoxha A, Ruffatti A, Tonello M, Bontadi A, Salvan E, et al. Antiphosphatidylserine/ prothrombin antibodies in primary antiphospholipid syndrome. Lupus 2012; 21(7):787-789.
- [34] Vlagea A, Gil A, Cuesta MV, Arribas F, Diez J, et al. Antiphosphatidylserine/prothrombin antibodies (aPS/PT) as potential markers of antiphospholipid syndrome. Clin Appl Thromb Hemost 2013; 19(3):289-296.
- [35] Simmelink MJA, De Groot PG, Derksen RHWM. A study on associations between antiprothrombin antibodies, antiplasminogen antibodies and thrombosis. J Thromb Haemost 2003; 1:735-739.
- [36] Lerner A, Agmon-Levin N, Shapira Y, Gilburd B, Reuter S, et al. The thrombophilic network of autoantibodies in celiac disease. BMC Medicine 2013; 11:89.
- [37] Lutters BC, de Groot PG, Derksen RH. Beta 2 Glycoprotein I a key player in the antiphospholipid syndrome. Isr Med Assoc J 2002; 4:958-962.
- [38] Takeuchi R, Atsumi T, Ieko M, Ichikawa K, Koike T. Suppressed intrinsic fibrinolytic activity by monoclonal anti beta 2 glycoprotein I autoantibodies: possible mechanism for thrombosis in patients with antiphospholipid syndrome. Br J Haematol 2002; 119:781-788.
- [39] Yasuda, S, Atsumi, T, Ieko, M, Matsuura E, Kobayashi K. Nicked β2-glycoprotein I: a marker of cerebral infarct and a novel role in the negative feedback pathway of extrinsic fibrinolysis. Blood 2004; 103:3766-72.
- [40] Bu C, Gao L, Xie W, Zhang J, He Y. β2-glycoprotein I is a cofactor for tissue plasminogen activator-mediated plasminogen activation. Arthritis Rheum 2009; 60:559-568.