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High pKa variability of cysteine residues in structural 
databases and the effect of H-bond contributions

[Yapısal veritabanlarındaki sistein kalıntılarında pKa değerinin yüksek oranda 
değişkenlik göstermesi ve H-bağı katkılarının etkisi]

ABSTRACT
Objective: Our first objective was to extensively compare two most common empirical protein 
pKa predictors, propka1.0 (ppka1) and propka3.0 (ppka3); we have specifically compared 
them as tools for high-throughput analyses of structural datasets with a particular focus on the 
amino acid Cysteine (Cys); afterwards, our goal was to assess their performances with known 
instances of reactive Cys residues.
Methods: Structural datasets were downloaded from the PDB repository and pipelined to 
different pKa prediction software; results were parsed with in-house scripts, to extract relevant 
information, and then subjected to further analysis, including detailed output comparisons for 
different programs.
Results: With ppka1, H-bond contributions dictated the prediction of Cys pKa, particularly 
for exposed residues; this was not the case for the most recent version, ppka3. This feature 
of ppka1 fits with recent, independent studies reporting the critical role of H-bond network in 
the activation of reactive Cys residues; indeed, when tested in a benchmark for its ability to 
describe reactive Cys residues, ppka1 provided the best results, favorably comparing to other 
methods tested.
Conclusion: ppka1 can be an effective aid in redox bioinformatics as a tool for high-throughput 
Cys pKa predictions: it is extremely fast, yet capable of competitive performances, particularly 
apt to predict very reactive (e.g. nucleophilic, exposed) functional Cys residues. This work 
provides new insights on propka (in its different versions) predictions as well as substantial 
support to the critical role of H-bond and exposure in Cys activation.
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ÖZET
Amaç: Bu çalışmada, yaygın olarak kullanılan iki ampirik pKa tahmin edici program olan 
propka 1.0 (ppka1) ile propka 3.0 (ppka3)’ı karşılaştırılmıştır. İki program, sistein (Cys) amino 
asidi odaklı, yapısal veri tabanlarının yüksek hacimli analizlerinde kullanılan araçlar olarak test 
edilmiş, ve performanslarının, bilinen reaktif sistein kalıntılarına ilişkin bilgiler kullanılarak 
değerlendirilmesi hedeflenmiştir.
Metod: Yapısal veri setleri, PDB veri tabanından bilgisayara indirilmiş ve farklı pKa tahmin 
programların aktarılmıştır. Programların çıktılarından amaca yönelik hazırlanmış betikler kulla-
nılarak ilgili bilgiler çıkarılmış ve elde edilen bilgiler daha sonra farklı programların çıktılarının 
karşılaştırıldığı detaylı analizlere konu edilmiştir.
Bulgular: ppka1 programında, Cys kalıntısına ilişkin pKa değerinin hesaplanırken; özellikle 
yüzeyde yer alan kalıntılarda, H-bağı katkıları önemli bir yer teşkil etmektedir. Son sürüm olan 
ppka3 için bu durum farklıdır. ppka1’nın bu özelliği H-bağı ağının reaktif, fonksiyonel Cys 
kalıntılarının aktivasyonundaki kritik rolünü gösteren, yakın zamanda yapılmış bağımsız ça-
lışmalar ile örtüşmektedir. Gerçekten de reaktif Cys kalıntılarının tanımlayabilme yeteneği test 
edildiğinde, ppka1 programından diğer metotlara kıyasla daha başarılı sonuçlar elde edilmiştir. 
Sonuç: Çalışmada ppka1 programının, redoks biyoinformatiğinde, yüksek hacimli veri setle-
rinin Cys kalıntılarına tahmininde etkin bir araç olarak kullanılabileceği gösterilmiştir. ppka1 
özellikle reaktif (Örn. nükleofilik, yüzeyde yer alan) fonksiyonel Cys kalıntılarının hassas ola-
rak tahmin edilmesinde, hızlı ve diğer programlarla rekabet edebilen performansa sahiptir. Bu 
çalışma, propka (ppka1, ppka3) tahminleri ile ilgili ilişkin önemli bilgiler ile beraber Cys ak-
tivasyonunda H-bağının ve kalıntının yüzeyde bulunmasının kritik rolünü destekleyici bilgiler 
sunmaktadır.
Anahtar Kelimeler: Sistein, redoks biyoloji, biyoinformatik, biyokimya
Çıkar Çatışması: Yazarların çıkar çatışması yoktur.
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sion1.0 [17], 2.0 [18] and 3.0 [19]; all of them provide 
very fast computational performances (i.e. they are all 
suited for high-throughput bioinformatics tasks). The 
first two propka implementations differ only for the way 
protein ligands are treated; for our goals, (i.e. assessing 
databases of protein structures only) results from ver-
sions 1.0 (ppka1) and 2.0 (ppka2) are super imposable: 
we chose ppka1, as it is the original version. In turn, the 
latest version (propka 3.0, ppka3) implements a different 
parametrization of the empirical rules [19,20], and thus 
its results are different from ppka1 (and ppka2). In this 
work we specifically addressed this question: how differ-
ent are the results from these two programs? And, if these 
differences are significant, what is the rationale behind 
diverging results? Among titratable residues (Asp, Glu, 
Tyr, Cys, His, Lys, Arg), we reserved specific attention to 
Cys, a major subject of our research interests. As to Cys, 
various independent studies have highlighted the critical 
importance of (i) the H-bond network (i.e. H-bond net-
work more important than other contributors, like electro-
static perturbation, etc), and (ii) exposure, in determining 
its reactivity [2,14,22,24]: most reactive functional Cys 
tend to be solvent accessible (not surprisingly, as deeply 
buried sites are usually not accessible to reactants) and 
present tight H-bond networking. We carefully examined 
the behavior of different propka version in respect to these 
features, and against a large dataset of protein structures. 
For ppka1, we recorded a very tight relationship (i.e. more 
so than for any other amino acid) between Cys pKa and 
H-bond network contributions, particularly for solvent ac-
cessible Cys residues; the relationship was significantly 
attenuated in the most recent program, ppka3. This dif-
ference can have profound biological implications: reac-
tive and functional Cys residue are often exposed and in-
volved in H-bond interactions [2,24]; for them, ppka1 and 
ppka3 tend to present significantly different results, and 
thus should not be used interchangeably. To assess this 
claim, we tested them with a representative benchmark of 
well characterized, reactive Cys residues. 

Materials and Methods
Structural datasets
The PDB repository [25] was used as the reference source 
of protein structures; to refine our dataset we applied the 
following filters to the search, using tools available for ad-
vanced searches implemented in the RCSB search engine 
[25]: (i) only crystallographic structures were considered; 
(ii) only structures with less than 30% amino acidic iden-
tity (to any other structure in the dataset) were kept; (iii) 
only protein with more than 100 and less than 1000 amino 
acids were considered. Proteins passing these filters were 
downloaded locally and, afterwards, checked for structur-
al inconsistencies with the molecular modeling suite Veg-
aZZ [26]. Considering its (very large) size, the complete 
list of proteins and residues, including the full details of 
the calculations reported in these results (and summed up 
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Introduction
Cysteine (Cys) is a very versatile amino acid, often found 
at the functional sites of proteins, where it serves a variety 
of structural and functional roles [1-3], including struc-
tural stabilization (disulfide bridges, metal coordination), 
catalysis (e.g. active site nucleophile in thiol-based oxi-
doreductases) and post-translational modifications (e.g. 
reversible Cys modifications through reactive oxygen 
species, ROS, and reactive nitrogen species) [4,5]. Apart 
from its standard physiological roles, Cys is also a major 
target of oxidative stress: at higher ROS concentrations, 
non-functional, but solvent accessible, Cys residues may 
incur unwanted oxidation events [6-8]; in many cases, 
these oxidations are effectively counteracted through nat-
ural defensive mechanisms [9]; however, intense and/or 
persistent levels of ROS stress ultimately lead to protein 
damage (misfolding, cross-linkages, inactivation of func-
tional residues) [10,11]. A critically important aspect of 
Cys reactivity is its acid dissociation constant (e.g. pKa of 
its thiol, i.e. Cys functional group). Most commonly, de-
protonated Cys are better nucleophiles than their proton-
ated counterparts, and tend to be significantly more reac-
tive toward ROS and, in general, electrophilic substrates 
[12,13]. Thus, effective prediction protocols of Cys pKa 
are very important, particularly for studies aimed to detect 
and describe reactive Cys residues in proteins; for exam-
ple, the identification of specific redox targets in the cell 
(e.g. substrates of thiol-oxidoreductases) or prediction of 
new hot spots of oxidative stress. 
Different approaches have been applied to Cys pKa pre-
diction: a) density functional theory (DFT) based predic-
tors, deriving pKa estimation from natural population 
analysis on the atomic charge on Cys sulfur [14]; b) nu-
merical solutions of the Poisson-Boltzmann (PB) equa-
tion, calculating the probability of protonation at different 
pH [15,16]; and c) empirical protocols, where energetic 
contributions provided by surrounding residues are es-
timated based on semi-empirical rules (i.e. empirically 
derived approximations, turned into theoretical assump-
tions) [17-19]. All these approaches present advantages 
and disadvantages [2]. DFT based calculations can be 
extremely precise [14]; PB methods are very informative 
(they provide detailed information on the titration range) 
[16]; empirical approaches are extremely fast, and much 
simpler to set up and handle [17-20]. However, both DFT 
and PB based methods implement complex theoretical 
protocols that severely limit their applicability to large 
scale automated calculations. Currently, empirical ap-
proaches are the only practical choice for large scale bio-
informatics projects [2,21,22]: these methods are orders 
of magnitude faster, do not require extensive work to pre-
pare input files, while at the same time maintaining good 
performances (as compared to major competitors) [23]. 
The most common empirical program is the method 
called propka. Three versions have been released: ver-



not a practical choice for high-throughput scans of struc-
tural databases.
Benchmark
For our benchmark, we selected a set of proteins from lit-
erature; because of limited experimental information, Cys 
is often avoided in protein pKa benchmarks [17,23]. To 
collect reference information we have looked for publica-
tions reporting experimentally derived Cys pKa; among 
them, we searched for cases where structural information 
was available (e.g. protein with a PDB entry). When lit-
erature is searched in this direction only a limited number 
of entries can be listed (in our case, ten proteins Table 3); 
as previously mentioned, this is mostly ascribable to the 
scarcity of reliable experimental data; however, it has to 
be noted that the size of our benchmark is comparable 
with previous works on Cys pKa predictions and bench-
mark [2,14,17,23], where the average number of proteins 
analyzed for Cys pKa (i.e. on average, seven) was below 
ten entries (the size of our set, Table 3). The structural 
references for all proteins in Table 3 are the following 
(gene name (source)/ PDB structural identifier): trxA (H. 
sapiens)/ 1XOB, grx3 (H. sapiens)/ 1ILB, pdi (E. coli)/ 
4EKZ, grx1 (E. coli)/1JHB, trx2 (R. capsulatus)/ 2PPT, 
trxA (S. aureus)/ 2O89, dsba (E. coli)/ 1a24, grx1 (S. cere-
visiae)/ 2JAC, grx1 (S. scrofa)/ 1KTE, TryX (T. brucei)/ 
1O73.

in Table 1 and Table 2), are available as supporting infor-
mation (Suppl. file 1, Suppl. file 2). 

pKa predictions 

For pKa predictions we used the empirical approach 
propka; we have downloaded and tested different ver-
sions: version 1.0 (ppka1, the original implementation, 
providing exactly the same results of version 2.0, ppka2, 
if results for ligands are not considered, as was the case 
in our calculations) and the latest implementation (ver-
sion 3.0, ppka3). We compared in details the results of 
ppka1 and ppka3 (completed data are available as sup-
porting information, Suppl. file 1, Suppl. file 2). The two 
versions of the ppka program were then tested with an 
in-house conducted benchmark (Table 3), aimed to assess 
their performances against known cases of functional Cys 
residues. For a more complete picture, we compared ppka 
1 and ppka3 with another common pKa predictor, the PB 
based method H++ [27]. H++ calculations were run with 
default parameters (to normalize predictions, i.e. same set 
up for different proteins in Table 3). H++ was used only 
for benchmark purposes; as detailed in the Introduction, 
its application to high-throughput bioinformatics is ham-
pered by the considerable computational load intrinsic to 
PB based calculations. In general, and with current (or 
near-future) hardware capabilities, similar approaches are 
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Table 1.	 Comparison of different propka implementations (all residues)

	 ppka3	 ppka3 	 ppka1	 ppka1 	 ΔpKa 	 p-value

	 [pKa]#	 SD	 [pKa]	 SD	 (ppka3 – ppka1)	 (t-test, n=1000)

CYS	 10.953	 1.325	 9.151	 1.985	 1.802	 2.5E-189

ASP	 3.601	 0.843	 3.194	 1.021	 0.407	 7.1E-21

GLU	 4.395	 0.724	 4.142	 0.89	 0.253	 1.2E-12

TYR	 11.201	 1.129	 10.899	 1.365	 0.302	 5.2E-08

HIS	 5.872	 1.060	 5.916	 1.719	 -0.044	 0.541

ARG	 12.515	 0.655	 12.036	 0.565	 0.479	 3.6E-55

LYS	 10.485	 0.614	 10.333	 0.461	 0.152	 1.3E-11

#legend: [pKa]=average pKa for each type, SD=Standard deviation; ΔpKa (ppka3 – ppka1) = ppka3 [pKa] - ppka1 [pKa]; t-test described in Methods; 1,000 data 
points (for each residue type) were randomly selected from the full dataset of 750 proteins.

Table 2.	 Comparison of different propka implementations (only exposed residues)

	 ppka3 	 ppka3	 ppka1	 ppka1	 ΔpKa 	 p-value

	 [pKa]#	 SD	 [pKa]	 SD	 (ppka3 – ppka1)	 (t-test, n=1000)

CYS	 9.545	 0.685	 8.220	 1.352	 1.325	 4.1E-108

ASP	 3.463	 0.644	 3.223	 0.747	 0.240	 2.8E-09

GLU	 4.323	 0.581	 4.187	 0.604	 0.136	 1.8E-04

TYR	 10.597	 0.692	 10.650	 1.241	 -0.053	 0.515

HIS	 6.292	 0.488	 6.656	 0.406	 -0.364	 1.1E-32

ARG	 12.594	 0.499	 12.064	 0.320	 0.530	 4.2E-61

LYS	 10.539	 0.494	 10.327	 0.209	 0.212	 9.2E-19

# legend: [pKa]=average pKa for each type, SD=Standard deviation; ΔpKa (ppka3 – ppka1) = ppka3 [pKa] - ppka1 [pKa]; t-test described in Methods; 1,000 data 
points (for each type) were randomly selected from the full dataset (750 proteins).



any other structure in the dataset) were kept; (iii) only 
protein with more than 100 and less than 1000 amino 
acids were considered. Among the PDB entries passing 
these filters (circa 13000, as of April 2013), 750 structures 
were randomly selected for further analysis, containing a 
total number of 40605 titratable sites. General statistics 
of the result of the application of ppka1 and ppka3, run in 
parallel and on the same dataset of 750 protein structures, 
are shown in Table 1. As expected, ppka1 and ppka3 pro-
vide different results. The differences are significant for 
all titratable types (t-test, n=1000; all p-values<0.001), 
except for His (i.e. p-value 0.541). To be noted: to de-
rive the numerical values reported here, 1000 data points 
for each type were randomly selected (with automatic 
routines, to avoid internal bias, see Methods) and further 
considered; this was done to allow better comparisons 
between different amino acid types, which have different 
abundance (e.g. Lys, Glu and Asp are two to three times 
more frequent than Cys, His and Tyr). It should be further 
noted that 1000 points per amino acid, randomly selected 
through unbiased computational procedures, should rep-
resent a statistically robust dataset; we confirmed this 
claim by performing three independent runs of “random 
sampling” (i.e. three repetition of the random selection, 
each time independently randomizing the selection of the 
1000 residues, for each amino acid type); these control 
calculations (available as supporting information, Suppl. 
file 3) conclusively confirmed the data in Table 1 (i.e. re-
gardless of the randomly chosen set of residues, results in 
Table 1 are consistently valid), which thus can be safely 
commented and further discussed. A first important aspect 
to note is the “outstanding case” of Cys: by all means, 
these residues showed the largest difference between 
ppka3 and ppka1 predictions (on average ΔpKa=1.802, a 
large value, with a very significant meaning). Consider-
ing the numbers involved, ppka1 predicts Cys with pKa 
values much closer (than what estimated by ppka3) to 
physiological ranges (e.g. 6 to 8 pH units). This observa-
tion is especially important for exposed residues: in these 

Turk J Biochem 2014; 39(4):435-442 438 Marino and Soylu

Statistical analysis 
Considering the different amino acid abundance in pro-
teins (e.g. titratable Cys residues, are typically much less 
than glutamic acids), statistics presented in Table 1 and 2 
(i.e. summary of results for ppka1 and ppka3) were de-
rived with the following procedure, aimed to normalize 
the data: 1,000 residues were employed for each titratable 
type; starting from the full dataset (40605 titratable sites, 
described before), 1000 data points for each type were ran-
domly selected and further considered (i.e. exactly 1000 
Asp, 1000 Arg, 1000 Tyr, 1000 Cys, 1000 Glu, 1000 His, 
1000 Lys were compared). As such, the values for differ-
ent amino acids can be better compared. The process of 
random selection was unbiased (i.e. not dependent on our 
choices and/or our supervision), made through automatic 
routines (i.e. shuffle functions, implemented in random 
class, python version 2.7). Statistical evaluations (average 
and deviations, linear correlations with Pearson’s R coef-
ficients) were performed with in-house python (version 
2.7.4) scripts and with Microsoft Excel® 2010 (ANOVA, 
paired t-test, coefficients of determination). ANOVA (one 
way) test was run for data in Table 3, to confirm (null 
hypothesis not rejected; p-value=0.1462) that the groups 
have equal mean. This allowed further comparisons (e.g. 
how well each method’s results could correlate with ex-
perimental data, Table 3), described in the results section 
(i.e. when discussing results of the benchmark).

Results and Discussion
Here we have employed the two most representative ver-
sions of the empirical pKa predictor propka, ppka1 (the 
original version) and ppka3 (the most recent version), for 
large scale, comparative analyses of their performances 
against protein structure datasets. For our calculations 
with ppka1 and ppka3, we built a dataset of proteins ap-
plying the following rules to the PDB repository: (i) only 
protein structural models derived from crystallographic 
studies were downloaded; (ii) to limit redundancy, only 
structures with less than 30% amino acidic identity (to 

Table 3.	 Benchmark

Gene	 Source	 Residue	 “Exp”	 “ppka3”	 “ppka1”	 “H++”#

trxA	 H. sapiens	 Cys51	 4.8	 7.7	 4.2	 10.2

grx3	 H. sapiens	 Cys22	 3.6	 8.6	 5.5	 7.7

pdi	 E. coli	 Cys11	 5.5	 7.6	 4.3	 7.6

grx1	 E. coli	 Cys32	 7.1	 9.2	 4.8	 6.1

dsba	 E. coli	 Cys30	 3.5	 10.7	 9.5	 10.1

trxA	 S. aureus	 Cys29	 6.4	 7.7	 3.3	 10.4

trx2	 R. capsulatus	 Cys73	 5.2	 8.3	 5.9	 10.4

grx1	 S. cerevisiae	 Cys26	 4	 7.9	 4.7	 8.3

grx1	 S. scrofa	 Cys22	 4.9	 8.2	 4.1	 8.8

TryX	 T. brucei	 Cys40	 7.2	 8.4	 6.2	 8.9

#“Exp”= experimental data; other columns: results from different predictors (ppka1, ppka3, H++).



tion, in terms of energetic contributors (solvation effect, 
H-bond network, and electrostatics) to the prediction. A 
major distinction between ppka1 and ppka3 resides in the 
relative weights scheme; in Fig. 1 the relative weights 
(measured as % of the contribution to the output) for 
ppka1 and ppka3 are reported: as expected (i.e. results 
from Table 1), these differences regard all amino acids, 
with His being the most “untouched” type, i.e. ppka1 and 
ppka3 give a similar treatment to this amino acid. Also 
acidic residues are comparably evaluated, with H-bond 
seen by both methods as the biggest contributor. The two 
most diverging cases are Cys and Tyr; here solvation ef-
fects are more prominent in ppka3 than in ppka1, to the 
considerable detriment of H-bond network (Cys) and 
electrostatics (Tyr). Focusing on Cys (Fig. 2, and legend), 

positions, thiolates being generally more reactive than 
thiols, such differences may have deeper functional im-
plications. Table 2 sums up the results obtained running 
the two programs against the same dataset, but parsing in 
only residues in solvent accessible areas of the protein. 
The results are similar to Table 1: (i) Cys is still the most 
variable residue, and (ii) predictions of the two programs 
diverge the most in the case of Cys (again, the difference 
is significant; t-test, n=1000, p-value<0.001). The dif-
ference between ppka1 and ppka3 is still the highest in 
the comparison (ΔpKa = 1.325), but in this context it has 
even more relevant implications: from a biological per-
spective, ppka1 results imply that, at neutral pH, a large 
fraction of exposed Cys population exist in its most reac-
tive form, i.e. as a thiolate. This is not the case for ppka3; 
while in-depth biophysical considerations are beyond the 
scope of this work, here we report that such differences in 
the output of propka versions are (i) particularly signifi-
cant, (ii) particularly large, and (iii) particularly (biologi-
cally) relevant in the case of Cys. From various points of 
views and especially in respect to this important amino 
acid, ppka1 and ppka3 behave as significantly different 
programs (rather than “simply” different implementa-
tions of the same theoretical protocol); the difference is 
not merely computational, but has important biological 
appendices: ppka1 estimations imply a much larger popu-
lation of reactive Cys thiolates in molecular surfaces, than 
ppka3. This makes the choice of which version of propka 
to employ very important for Cys predictions, as it will 
heavily affect the “biological significance” of the results. 
Such a clear cut observation has not been reported before; 
its implications are of highly practically relevance. 
We wanted to dig further into this direction, investigat-
ing the reasons behind such differences. As previously 
introduced, during our calculations we have parsed each 
output file, separately collecting all the available informa-
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Figure 1. Relative weights distribution for ppka1 and ppka3. Each relative contribution refers to the weight of each component (Solvation 
effect, abbreviated as “Solv”; H-bond contribution, “Hb”; Coulombic interactions, “Coul”) on the final ouput (i.e. on the predicted pKa 
value), for each amino acid type. Relative weights are expressed in percentage (sum of weights=100%, for both panel A and B). Panel A 
(left) shows results relative to ppka; panel B (right) shows results relative to ppka3. The legend (reporting symbols employed, for both 
panels) is shown on the right side of the figure. A note: lines connecting dots in the graphs do not represent trends (or any interpolating 
function), but only serve illustration purposes (i.e. so that values for each amino acid are easier to distinguish).
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Figure 2. Relative weights distribution for Cys pka predictions. 
The relative contributions (expressed in %; sum of weights=100%) 
for Cys are shown; abbreviations are as in Fig.1 and Table 1. 
Straight lines connect data-points for all-residue analysis; dotted 
lines, for exposed residues only. Squares and rhombi denote 
data from ppka1 (further abbreviated to pk1 in the Legend panel 
depicted in the figure), crosses and asterisks mark data from ppka3 
(further abbreviated to pk3 in the legend panel). Like Fig.1, lines 
connecting dots in the graphs do not represent trends, but only 
serve illustration purposes.
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tool for the analysis of reactive Cys pKa, particularly in 
high-throughput analyses (where DFT cannot possibly 
apply). We have tested this claim with an in-house, manu-
ally curated benchmark: ppka1 and ppka3 were run in 
parallel with a test case of well known and characterized 
proteins, each containing a reactive, functional Cys resi-
due (further details provided in the Methods section). As 
an additional comparative measure, we run another com-
mon pKa predictor, H++, a representative of the PB based 
methods [16], described in the introduction. This bench-
mark is comparable in size and objectives to previous lit-
erature reports (we refer in the Methods section for more 
details). Ppka1 provided the most accurate results: the 
average difference, between experimental and calculated 
values were 1.8 pH units, favorably comparing to a cor-
responding value of 3.2 pH units for ppka3 and 3.8 units 
for H++. Furthermore, we have tested which predictive 
method could correlate best with the experimental data; 
particularly we tested each set of predictions (i.e. “prop-
ka3”, “propka1”, and “H++” columns in Table 3) for in-
dependence with the experimental data (column “Exp” in 
Table 3). With the null hypothesis being that values in dif-
ferent columns were independent (α=0.05) results showed 
that (i) ppka3 did not sufficiently describe reactive Cys 
(data confirmed the null hypothesis, p-value=0.000346, 
p-value<α); this results can be taken as a measure of poor 
correlation between ppka3 predictions and experimental 
data; (ii) ppka1 performed considerably better, as the data 
(column “propka1” and column “Exp”) were found to be 
not independent (null hypothesis was not confirmed, p-
value=0.968454, p-value>α); (iii) like ppka3, H++ did 
not sufficiently describe reactive Cys (data confirmed the 
null hypothesis, p-value=0.000777, p-value<α). Then, 
we run the same comparisons among different predic-
tors: first, in support of previous results, ppka3 and 
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the all-residues analysis (straight lines in Fig. 2) show 
that ppka1weights much more (than ppka3) the H-bond 
contribution, while less the solvation effect; on average, 
the latter contributes an outstanding 85% in the deci-
sion process of ppka3; this value is downplayed to 50% 
in the case of ppka1. When only exposed Cys residues 
are considered, the difference between ppka1 and ppka3 
becomes substantial; two major observations: (i) ppka1 
weights the effect of exposure more than ppka3 (differ-
ence between square points and crosses in Fig. 2); (ii) 
ppka1 decision is driven by H-bond network, with sol-
vation effect becoming secondary (if anything, the oppo-
site scheme holds true for ppka3). Overall, ppka1 behave 
in a more “extreme” way (i.e. the effect of exposure on 
weights distribution is very pronounced). We have fur-
ther investigated the details of the contribution of H-bond 
networks on exposed Cys pKa predictions: in Fig. 3, the 
correlation plot is shown, for ppka1 (left panel) and ppka3 
(right panel). The difference between the two can be now 
visually appreciated: for ppka1 a strong linear correlation 
(R2=0.977) is evident, indicating a very tight, direct effect 
of H-bond contribution to the final ouput (i.e. pKa); for 
ppka3, this tight relationship is lost, and the correlation 
is much weaker (R2=0.513): ppka3 significantly down-
weights the importance of the H-bond network. Altogeth-
er, ppka1 and ppka3 differ the most in the case of solvent 
accessible Cys residues, due to a considerably diverging 
weight distribution scheme. As introduced before, recent 
DFT-based studies individuated H-bond network as the 
most critical determinant of Cys pKa in reactive Cys 
residues [14,24]; considering the high level of theoretical 
detail and accurate descriptions of the chemical system 
allowed by DFT, these results are particularly notewor-
thy. By overweighting H-bond contribution, ppka1 could 
stand as (significantly more so than ppka3) an effective 

Figure 3. Correlation between H-bond energy contribution to pKa for exposed Cys residues. The figure shows the correspondence between 
predicted pKa (output) and H-bond network contributions for exposed Cys residues, in the case of ppka1 (plot on the left, circles in panel 
A) and ppka3 (plot on the right, rhombi in panel B). Correlation coefficients (R2) are reported in the plots; in panel A (ppka1 predictions) 
the linear correlation is evident, denoting an outstanding prominence of H-bond interactions in determining predictions for exposed Cys 
residues. The correlation is much weaker for ppka3.
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Conclusion
In this work we have presented a large scale study on the 
performances of one of the most common methods for 
pKa prediction, propka; we tested two different imple-
mentations, the original program, ppka1, and the latest 
implementation, ppka3. A large, unbiased set of titratable 
residues derived from the PDB repository was employed 
for the calculations. We could register important differ-
ences among the two programs; these were particularly 
evident in the case of Cys. The major contribution behind 
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this conclusion with a benchmark, were ppka1 obtained 
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this study provides novel data and original insights into 
Cys pKa prediction; besides, it can be of practical interest 
for researches involved in Cys bioinformatics, and more 
broadly, in redox biology and thiol mediated regulation of 
protein function.
Acknowledgements
Conceived and designed the experiments: SMM. Per-
formed the experiments: SMM and IS. Analyzed the data: 
SMM. Wrote the paper: SMM and IS.
This work was supported by a grant from TUBITAK 
(113Z524) to SMM.

Turk J Biochem 2014; 39(4):435-442 441 Marino and Soylu



pK(a) prediction. BMC Biochem 2006; 7:18.
[24]	 Roos G, Foloppe N, Messens J. Understanding the pK(a) of redox 

cysteines: the key role of hydrogen bonding. Antioxid Redox Sig-
nal 2013; 18(1):94-127. 

[25]	 Research Collaboratory for Structural Bioinformatics. Protein 
Data Base. http://www.rcsb.org/pdb (Last accessed: November 
2013).

[26]	 Drug Design Laboratory. VegaZZ software. http://nova.colom-
bo58.unimi.it/cms (Last accessed: November 2013).

[27]	 Virginia Polytechnic Institute and State University. H++ program. 
http://biophysics.cs.vt.edu (Last accessed: November 2013).

Turk J Biochem 2014; 39(4):435-442 442 Marino and Soylu

[20]	 Sondergaard CR, Olsson MHM, Rostkowski M, Jensen JH. Im-
proved treatment of ligands and coupling effects in empirical cal-
culation and rationalization of pKa values. J Chem Theory Comput 
2011; 7:2284-95.

[21]	 Sanchez R, Riddle M, Woo J, Momand J. Prediction of reversibly 
oxidized protein cysteine thiols using protein structure properties. 
Protein Sci 2008; 17(3):473-81. 

[22]	 Marino SM, Gladyshev VN. Cysteine function governs its con-
servation and degeneration and restricts its utilization on protein 
surfaces. J Mol Biol 2010; 404(5):902-16. 

[23]	 Davies MN, Toseland CP, Moss DS, Flower DR. Benchmarking 


